Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells (original) (raw)
References
Hayflick, L. The limited in vitro lifespan of human diploid cell strains. Exp. Cell Res.37, 614–621 (1965). ArticleCAS Google Scholar
Loughran, O.et al. Evidence for the inactivation of multiple replicative lifespan genes in immortal human squamous cell carcinoma keratinocytes. Oncogene14, 1955–1964 (1997). ArticleCAS Google Scholar
Alcorta, D. A.et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA93, 13742–13747 (1996). ArticleADSCAS Google Scholar
Allsopp, R. C.et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA89, 10114–10118 (1992). ArticleADSCAS Google Scholar
Bodnar, A. G.et al. Extension of life-span by introduction of telomerase into normal human cells. Science279, 349–352 (1998). ArticleADSCAS Google Scholar
Wright, W. E. & Shay, J. W. The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol.27, 383–389 (1992). ArticleCAS Google Scholar
Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. & Schiller, J. T. HPV 16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J.8, 3905–3910 (1989). ArticleCAS Google Scholar
Munger, K., Phelps, W. C., Bubb, V., Howley, P. M. & Schlegel, R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol.63, 4417–4421 (1989). CASPubMedPubMed Central Google Scholar
Halbert, C. L., Demers, G. W. & Galloway, D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol.65, 474–478 (1991). Google Scholar
Foster, S. A. & Galloway, D. A. Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene12, 1773–1779 (1996). CASPubMed Google Scholar
Foster, S. A., Wong, D. J., Barrett, M. T. & Galloway, D. A. Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol. Cell. Biol.18, 1793–1801 (1998). ArticleCAS Google Scholar
Shay, J. W., Wright, W. E., Brasiskyte, D. & van der Haegen, B. A. E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene8, 1407–1413 (1993). CASPubMed Google Scholar
Band, V., Zajchowski, D., Kulesa, V. & Sager, R. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc. Natl Acad. Sci. USA87, 463–467 (1990). ArticleADSCAS Google Scholar
Shay, J. W., van der Haegen, B. A., Ying, Y. & Wright, W. E. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp. Cell Res.209, 45–52 (1993). ArticleCAS Google Scholar
Nakamura, T. M.et al. Telomerase catalytic subunit homologs from fission yeast and human. Science277, 955–959 (1997). ArticleCAS Google Scholar
Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature380, 79–82 (1996). ArticleADSCAS Google Scholar
Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev.12, 1769–1774 (1998). ArticleCAS Google Scholar
Klingelhutz, A. J., Barber, S. A., Smith, P. P., Dyer, K. & McDougall, J. K. Restoration of telomeres in human papillomavirus-immortalized human anogenital epithelial cells. Mol. Cell. Biol.14, 961–969 (1994). ArticleCAS Google Scholar
Stoppler, H., Hartmann, D. P., Sherman, L. & Schlegel, R. The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J. Biol. Chem.272, 13332–13337 (1997). ArticleCAS Google Scholar
Khleif, S. N.et al. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F mediated induction of cyclin kinase inhibitor activity. Proc. Natl Acad. Sci. USA93, 4350–4354 (1996). ArticleADSCAS Google Scholar
Demers, G. W., Foster, S. A., Halbert, C. L. & Galloway, D. A. Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc. Natl Acad. Sci. USA91, 4382–4386 (1994). ArticleADSCAS Google Scholar
Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell63, 1129–1136 (1990). ArticleCAS Google Scholar
Kiyono, T.et al. Binding of high risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc. Natl Acad. Sci. USA94, 11612–11616 (1997). ArticleADSCAS Google Scholar
Dalal, S., Gao, Q., Androphy, E. J. & Band, V. Mutational analysis of human papillomavirus type 16 E6 demonstrates that p53 degradation is necessary for immortalization of mammary epithelial cells. J. Virol.70, 683–688 (1996). CASPubMedPubMed Central Google Scholar
Kamijo, T.et al. Tumor suppression at the mouse INK4A locus mediated by the alternative reading frame product p19ARF. Cell91, 649–659 (1997). ArticleCAS Google Scholar
Gross-Mesilaty, S.et al. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc. Natl Acad. Sci. USA95, 8058–8063 (1998). ArticleADSCAS Google Scholar
Huibregtse, J. M., Scheffner, M. & Howley, P. M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol.13, 775–784 (1993). ArticleCAS Google Scholar
Kim, N. W.et al. Specific association of human telomerase activity with immortal cells and cancer. Science266, 2011–2015 (1994). ArticleADSCAS Google Scholar
Krupp, G.et al. Molecular basis of artifacts in the detection of telomerase activity and a modified primer for a more robust ‘TRAP’ assay. Nucleic Acids Res.25, 919–921 (1997). ArticleCAS Google Scholar
Wright, W. E., Shay, J. W. & Piatyszek, M. A. Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res.23, 3794–3795 (1995). ArticleCAS Google Scholar