Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells (original) (raw)

References

  1. Hayflick, L. The limited in vitro lifespan of human diploid cell strains. Exp. Cell Res. 37, 614–621 (1965).
    Article CAS Google Scholar
  2. Loughran, O.et al. Evidence for the inactivation of multiple replicative lifespan genes in immortal human squamous cell carcinoma keratinocytes. Oncogene 14, 1955–1964 (1997).
    Article CAS Google Scholar
  3. Alcorta, D. A.et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).
    Article ADS CAS Google Scholar
  4. Allsopp, R. C.et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).
    Article ADS CAS Google Scholar
  5. Bodnar, A. G.et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).
    Article ADS CAS Google Scholar
  6. Wright, W. E. & Shay, J. W. The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol. 27, 383–389 (1992).
    Article CAS Google Scholar
  7. Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. & Schiller, J. T. HPV 16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8, 3905–3910 (1989).
    Article CAS Google Scholar
  8. Munger, K., Phelps, W. C., Bubb, V., Howley, P. M. & Schlegel, R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63, 4417–4421 (1989).
    CAS PubMed PubMed Central Google Scholar
  9. Halbert, C. L., Demers, G. W. & Galloway, D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65, 474–478 (1991).
    Google Scholar
  10. Foster, S. A. & Galloway, D. A. Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12, 1773–1779 (1996).
    CAS PubMed Google Scholar
  11. Foster, S. A., Wong, D. J., Barrett, M. T. & Galloway, D. A. Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol. Cell. Biol. 18, 1793–1801 (1998).
    Article CAS Google Scholar
  12. Shay, J. W., Wright, W. E., Brasiskyte, D. & van der Haegen, B. A. E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8, 1407–1413 (1993).
    CAS PubMed Google Scholar
  13. Band, V., Zajchowski, D., Kulesa, V. & Sager, R. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc. Natl Acad. Sci. USA 87, 463–467 (1990).
    Article ADS CAS Google Scholar
  14. Shay, J. W., van der Haegen, B. A., Ying, Y. & Wright, W. E. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp. Cell Res. 209, 45–52 (1993).
    Article CAS Google Scholar
  15. Nakamura, T. M.et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).
    Article CAS Google Scholar
  16. Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–82 (1996).
    Article ADS CAS Google Scholar
  17. Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev. 12, 1769–1774 (1998).
    Article CAS Google Scholar
  18. Klingelhutz, A. J., Barber, S. A., Smith, P. P., Dyer, K. & McDougall, J. K. Restoration of telomeres in human papillomavirus-immortalized human anogenital epithelial cells. Mol. Cell. Biol. 14, 961–969 (1994).
    Article CAS Google Scholar
  19. Stoppler, H., Hartmann, D. P., Sherman, L. & Schlegel, R. The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J. Biol. Chem. 272, 13332–13337 (1997).
    Article CAS Google Scholar
  20. Khleif, S. N.et al. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F mediated induction of cyclin kinase inhibitor activity. Proc. Natl Acad. Sci. USA 93, 4350–4354 (1996).
    Article ADS CAS Google Scholar
  21. Demers, G. W., Foster, S. A., Halbert, C. L. & Galloway, D. A. Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc. Natl Acad. Sci. USA 91, 4382–4386 (1994).
    Article ADS CAS Google Scholar
  22. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).
    Article CAS Google Scholar
  23. Kiyono, T.et al. Binding of high risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc. Natl Acad. Sci. USA 94, 11612–11616 (1997).
    Article ADS CAS Google Scholar
  24. Dalal, S., Gao, Q., Androphy, E. J. & Band, V. Mutational analysis of human papillomavirus type 16 E6 demonstrates that p53 degradation is necessary for immortalization of mammary epithelial cells. J. Virol. 70, 683–688 (1996).
    CAS PubMed PubMed Central Google Scholar
  25. Kamijo, T.et al. Tumor suppression at the mouse INK4A locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).
    Article CAS Google Scholar
  26. Gross-Mesilaty, S.et al. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc. Natl Acad. Sci. USA 95, 8058–8063 (1998).
    Article ADS CAS Google Scholar
  27. Huibregtse, J. M., Scheffner, M. & Howley, P. M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13, 775–784 (1993).
    Article CAS Google Scholar
  28. Kim, N. W.et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).
    Article ADS CAS Google Scholar
  29. Krupp, G.et al. Molecular basis of artifacts in the detection of telomerase activity and a modified primer for a more robust ‘TRAP’ assay. Nucleic Acids Res. 25, 919–921 (1997).
    Article CAS Google Scholar
  30. Wright, W. E., Shay, J. W. & Piatyszek, M. A. Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res. 23, 3794–3795 (1995).
    Article CAS Google Scholar

Download references