A new logic for DNA engineering using recombination in Escherichia coli (original) (raw)
Cohen, S.N., Chang, A.C., Boyer, H.W. & Helling, R.B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA70, 3240– 3244 (1973). ArticleCAS Google Scholar
Saiki, R.K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science230, 1350–1354 ( 1985). ArticleCAS Google Scholar
Collins, J. & Hohn, B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage λ heads. Proc. Natl Acad. Sci. USA75, 4242 –4246 (1978). ArticleCAS Google Scholar
Sternberg, N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl Acad. Sci. USA87, 103–107 ( 1990). ArticleCAS Google Scholar
Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA89, 8794– 8797 (1992). ArticleCAS Google Scholar
Ioannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet.6, 84–89 (1994). ArticleCAS Google Scholar
Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P. & Kushner, S.R. New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol.171, 4617–4622 ( 1989). ArticleCAS Google Scholar
Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnol.15, 859– 865 (1997). ArticleCAS Google Scholar
Bubeck, P., Winkler, M. & Bautsch, W. Rapid cloning by homologous recombination in vivo . Nucleic Acids Res.21, 3601– 3602 (1993). ArticleCAS Google Scholar
Oliner, J.D., Kinzler, K.W. & Vogelstein, B. In vivo cloning of PCR products in E. coli. Nucleic Acids Res.21, 5192–5197 (1993). ArticleCAS Google Scholar
Degryse, E. In vivo intermolecular recombination in Escherichia coli: application to plasmid constructions. Gene170, 45– 50 (1996). ArticleCAS Google Scholar
Chartier, C. et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol.70, 4805–4810 ( 1996). CASPubMedPubMed Central Google Scholar
Jasin, M. & Schimmel, P. Deletion of an essential gene in Escherichia coli by site specific recombination with linear DNA fragments. J. Bacteriol.159, 783– 786 (1984). CASPubMedPubMed Central Google Scholar
Winans, S.C., Elledge, S.J., Heilig Krueger, J. & Walker, G.C. Site -directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J. Bacteriol.161, 1219–1221 (1985). CASPubMedPubMed Central Google Scholar
Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H. & Koszinowski, U.H. Cloning and mutagenesis of a herpes virus genome as an infectious bacterial artificial chromosome. Proc. Natl Acad. Sci. USA94, 14759– 14763 (1997). ArticleCAS Google Scholar
He, T.C. et al. A simplified system or generating recombinant adenoviruses. Proc. Natl Acad. Sci. USA95, 2509– 2514 (1998). ArticleCAS Google Scholar
Russell, C.B., Thaler, D.S. & Dahlquist, F.W. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids. J. Bacteriol.171, 2609–2613 (1989). ArticleCAS Google Scholar
Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res.21, 3329–3330 (1993). ArticleCAS Google Scholar
Lafontaine, D. & Tollervey, D. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res.24, 3469–3471 (1996). ArticleCAS Google Scholar
Storck, T., Kruth, U., Kolhekar, R., Sprengel, R. & Seeburg, P.H. Rapid construction in yeast of complex targeting vectors for gene manipulation in the mouse. Nucleic Acids Res.24, 4594–4596 ( 1996). ArticleCAS Google Scholar
Clark, A.J. et al. Genes of the RecE and RecF pathways of conjugational recombination in Escherichia coli. Cold Spring Harb. Symp. Quant. Biol.49, 453–462 ( 1984). ArticleCAS Google Scholar
Hall, S.D., Kane, M.F. & Kolodner, R.D. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J. Bacteriol.175, 277–287 (1993). ArticleCAS Google Scholar
Clark, A.J., Satin, L. & Chu, C.C. Transcription of the Escherichia coli recE gene from a promoter in Tn5 and IS50. J. Bacteriol.176, 7024–7031 (1994). ArticleCAS Google Scholar
Hashimoto-Gotoh, T. & Sekiguchi, M. Mutations of temperature sensitivity in R plasmid pSC101. J. Bacteriol.131, 405–412 (1977). CASPubMedPubMed Central Google Scholar
Blomfield, I.C., Vaughn, V., Rest, R.F. & Eisenstein, B.I. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol. Microbiol.5, 1447–1457 (1991). ArticleCAS Google Scholar
Barbour, S.D., Nagaishi, H., Templin, A. & Clark, A.J. Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec- mutations . Proc. Natl. Acad. Sci. USA67, 128– 135 (1970). ArticleCAS Google Scholar
Clark, A.J. Progress toward a metabolic interpretation of genetic recombination of Escherichia coli and bacteriophage λ. Genetics78, 259–271 (1974). CASPubMedPubMed Central Google Scholar
Hall, S.D. & Kolodner, R.D. Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein. Proc. Natl Acad. Sci. USA91, 3205– 3209 (1994). ArticleCAS Google Scholar
Kusano, K., Takahashi, N.K., Yoshikura, H. & Kobayashi, I. Involvement of RecE exonuclease and RecT annealing protein in DNA double-strand break repair by homologous recombination. Gene138, 17–25 (1994). ArticleCAS Google Scholar
Murphy, K.C. λ gam protein inhibits the helicase and χ-stimulated recombination activities of Escherichia coli RecBCD enzyme. J. Bacteriol.173, 5808–5821 ( 1991). ArticleCAS Google Scholar
O'Connor, M., Peifer, M. & Bender, W. Construction of large DNA segments in Escherichia coli.Science244, 1307– 1312 (1989). ArticleCAS Google Scholar
Crouzet, J. et al. Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proc. Natl Acad. Sci. USA94, 1414–1419 (1997). ArticleCAS Google Scholar
Link, A.J., Phillips, D. & Church, G.M. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol.179, 6228–6237 (1997). ArticleCAS Google Scholar
Dabert, P. & Smith, G.R. Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by χ sites. Genetics145, 877– 889 (1997). CASPubMedPubMed Central Google Scholar
Jessen, J.R. et al. Modification of bacterial artificial chromosomes through χ-stimulated homologous recombination and its application in zebrafish transgenesis. Proc. Natl Acad. Sci. USA95, 5121– 5126 (1998). ArticleCAS Google Scholar
Murphy, K.C. Use of bacteriophage λ recombination functions to promote gene replacement in scherichia coli. J. Bacteriol.180, 2063 –2071 (1998). CASPubMedPubMed Central Google Scholar
Kolodner, R., Hall, S.D. & Luisi-DeLuca, C. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol. Microbiol.11, 23–30 (1994). ArticleCAS Google Scholar
Muniyappa, K. & Radding, C.M. The homologous recombination system of phage λ. Pairing activities of β protein. J. Biol. Chem.261, 7472–7478 ( 1986). CASPubMed Google Scholar
Noirot, P. & Kolodner, R.D. DNA Strand invasion promoted by Escherichia coli RecT protein. J. Biol. Chem.273, 12274–12280 (1998). ArticleCAS Google Scholar
Resnick, M.A. The repair of double-strand breaks in DNA; a model involving recombination . J. Theor. Biol.59, 97– 106 (1976). ArticleCAS Google Scholar
Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J. & Stahl, F.W. The double-strand-break repair model for recombination. Cell33, 25–35 (1983). ArticleCAS Google Scholar
Luisi-DeLuca, C. & Kolodner, R.D. Effect of terminal non-homology on intramolecular recombination of linear plasmid substrates in Escherichia coli. J. Mol. Biol.227, 72–80 (1992). ArticleCAS Google Scholar
Kilby, N.J., Snaith, M.R. & Murray, J.A. Site-specific recombinases: tools for genome engineering . Trends Genet.9, 413– 421 (1993). ArticleCAS Google Scholar
Sauer, B. Site-specific recombination: developments and applications. Curr. Opin. Biotechnol.5, 521–527 (1994). ArticleCAS Google Scholar
Schwenk, F., Kuehn, R., Angrand, P.-O., Rajewsky, K. & Stewart A.F. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res.26, 1427–1432 (1998). ArticleCAS Google Scholar
Penfold, R.J. & Pemberton, J.M. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene118, 145–146 ( 1992). ArticleCAS Google Scholar
Buchholz, F., Ringrose, L., Angrand, P.O., Rossi, F. & Stewart, A.F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination . Nucleic Acids Res.24, 4256– 4262 (1996). ArticleCAS Google Scholar
Buchholz, F., Angrand, P.O. & Stewart, A.F. A simple assay to determine the functionality of Cre or FLP recombination targets in genomic manipulation constructs. Nucleic Acids Res.24, 3118–3119 (1996). ArticleCAS Google Scholar