NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis (original) (raw)
References
Arnone, M.I. & Davidson, E.H. The hardwiring of development—organization and function of genomic regulatory systems. Development124, 1851–1864 (1997). CASPubMed Google Scholar
Gray, S. & Levine, M. Transcriptional repression in development . Curr. Opin. Cell. Biol.8, 358– 364 (1996). ArticleCAS Google Scholar
Mandel, G. & McKinnon, D. Molecular basis of neural-specific gene expression. Annu. Rev. Neurosci.16, 323–345 (1993). ArticleCAS Google Scholar
Schoenherr, C.J. & Anderson, D.J. Silencing is golden: negative regulation in the control of neuronal gene transcription . Curr. Opin. Neurobiol.5, 566– 571 (1995). ArticleCAS Google Scholar
Mori, N., Schoenherr, C., Vandenbergh, D.J. & Anderson, D.J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells . Neuron9, 45–54 (1992). ArticleCAS Google Scholar
Kraner, S.D., Chong, J.A., Tsay, H.J. & Mandel, G. Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron9, 37–44 ( 1992). ArticleCAS Google Scholar
Schoenherr, C.J., Paquette, A.J. & Anderson, D.J. Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl Acad. Sci. USA93, 9881–9886 (1996). ArticleCAS Google Scholar
Scholl, T., Stevens, M.B., Mahanta, S. & Strominger, J.L. A zinc finger protein that represses transcription of the human MHC class II gene, DPA. J. Immunol.156, 1448– 1457 (1996). CASPubMed Google Scholar
Schoenherr, C.J. & Anderson, D.J. The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science267, 1360– 1363 (1995). ArticleCAS Google Scholar
Chong, J.A. et al. REST: A mammalian silencer protein that restricts sodium channel expression to neurons. Cell80, 949– 957 (1995). ArticleCAS Google Scholar
Wuenschell, C.W., Mori, N. & Anderson, D.J. Analysis of SCG10 gene expression in transgenic mice reveals that neural specificity is achieved through selective derepression . Neuron4, 595–602 (1990). ArticleCAS Google Scholar
Bessis, A., Champtiaux, N., Chatelin, L. & Changeux, J.-P. The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc. Natl Acad. Sci. USA94, 5906– 5911 (1997). ArticleCAS Google Scholar
Kallunki, P., Edelman, G.M. & Jones, F.S. Tissue-specific expression of the L1 cell adhesion molecular is modulated by the neural restrictive silencer element. J. Cell. Biol.138, 1343–1354 (1997). ArticleCAS Google Scholar
Kallunki, P., Jenkinson, S., Edelman, G.M. & Jones, F.S. Silencer elements modulate the expression of the gene for the neuron-glia cell-adhesion molecule, NG-CAM. J. Biol. Chem.270, 21291–21298 (1995). ArticleCAS Google Scholar
Li, L., Suzuki, T., Mori, N. & Greengard, P. Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc. Natl Acad. Sci. USA90, 1460–1464 (1993). ArticleCAS Google Scholar
Schoch, S., Cibelli, G. & Thiel, G. Neuron-specific gene expression of synapsin I: major role of a negative regulatory mechanism. J. Biol. Chem.271, 3317–3323 (1996). ArticleCAS Google Scholar
Moody, S.A., Quigg, M.S. & Frankfurter, A. Development of the peripheral trigeminal system in the chick revealed by an isotype-specific anti-ß-tubulin monoclonal antibody . J. Comp. Neurol.279, 567– 580 (1989). ArticleCAS Google Scholar
Molkentin, J.D. & Olson, E.N. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev.6, 445–453 (1996). ArticleCAS Google Scholar
Tapia-Ramirez, J., Eggen, B.J.L., Peral-Rubio, M.J., Toledo-Aral, J.J. & Mandel, G. A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc. Natl Acad. Sci. USA94, 1177–1182 (1997). ArticleCAS Google Scholar
Fekete, D.M. & Cepko, C.L. Replication-competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. 13, 2604–2613 (1993).
Homburger, S.A. & Fekete, D.M. High efficiency gene transfer into the embryonic chicken CNS using B-subgroup retroviruses . Dev. Dyn.206, 112–120 (1996). ArticleCAS Google Scholar
Petropoulos, C.J. & Hughes, S.H. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J. Virol.65, 3728– 3737 (1991). CASPubMedPubMed Central Google Scholar
Bader, D., Masaki, T. & Fischmann, D.A. Immuno-chemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell. Biol.95, 763–770 ( 1982). ArticleCAS Google Scholar
Kallunki, P., Edelman, G.M. & Jones, F.S. The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc. Natl Acad. Sci. USA in press.
Palm, K., Belluardo, N., Metsis, M. & Timmusk, T. Neuronal expression of zinc-finger transcription factor REST/NRSF/XBR gene . J. Neurosci.18, 1280– 1296 (1998). ArticleCAS Google Scholar
Vandenbergh, D.J., Wuenschell, C.W., Mori, N. & Anderson, D.J. Chromatin structure as a molecular marker of cell lineage and developmental potential in neural crest-derived chromaffin cells. Neuron3, 507–518 (1989). ArticleCAS Google Scholar
Kohler, J., Schafer-Preuss, S. & Buttgereit, D. Related enhancers in the intron of the beta1 tubulin gene of Drosophila melanogaster are essential for maternal and CNS-specific expression during embryogenesis. Nucleic Acids Res.24, 2543–2550 (1996). ArticleCAS Google Scholar
Robertson, E.J. Embryo-derived stem cell lines. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.J.) 71– 112 (IRL Press, Oxford, 1987). Google Scholar
Hunter, E. Biological techniques for avian sarcoma viruses. Methods Enzymol.58, 379–393 ( 1979). ArticleCAS Google Scholar
Morgan, B.A. & Fekete, D.M. Manipulating gene expression with replication-competent retroviruses. in Methods in Avian Embryology (ed. Bronner-Fraser, M.E.) 185–218 (Academic Press, San Diego, 1996). Chapter Google Scholar
Hamburger, V. & Hamilton, H.L. A series of normal stages in the development of the chick embryo. Dev. Dyn.195, PPL>272 (1992).
Kaufman, M.H. Histological procedures for mammalian embryos. in Postimplantation Mammalian Embryos, A Practical Approach (eds Copp, A.J. & Cockroft, D.L.) 81–91 (IRL Press, Oxford, UK, 1990). Google Scholar
Ma, Q., Chen, Z.F., Barrantes, I.B., de la Pompa, J.L. & Anderson, D.J. Neurogenin 1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron20, 469– 482 (1998). ArticleCAS Google Scholar
Birren, S.J., Lo, L.C. & Anderson, D.J. Sympathetic neurons undergo a developmental switch in trophic dependence. Development119, 597–610 (1993). CASPubMed Google Scholar
Myat, A., Henrique, D., Ish-Horowicz, D. & Lewis, J. A chick homologue of Serrate, and its relationship with Notch and Delta homologues during central neurogenesis. Dev. Biol.174, 233–247 ( 1996). ArticleCAS Google Scholar
Strahle, U., Blader, P., Adam, J. & Ingham, P. A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material . Trends Genet.10, 75– 76 (1994). ArticleCAS Google Scholar