A new model for Proterozoic ocean chemistry (original) (raw)
- Letter
- Published: 03 December 1998
Nature volume 396, pages 450–453 (1998)Cite this article
- 8913 Accesses
- 893 Citations
- 52 Altmetric
- Metrics details
Abstract
There was a significant oxidation of the Earth's surface around 2 billion years ago (2 Gyr)1,2,3,4. Direct evidence for this oxidation comes, mostly, from geological records of the redox-sensitive elements Fe and U reflecting the conditions prevailing during weathering1,2,3. The oxidation event was probably driven by an increased input of oxygen to the atmosphere arising from an increased sedimentary burial of organic matter between 2.3 and 2.0 Gyr5. This episode was postdated by the final large precipitation of banded iron formations around 1.8 Gyr1,2. It is generally believed that banded iron formations precipitated from an ocean whose bottom waters contained significant concentrations of dissolved ferrous iron, and that this sedimentation process terminated when aerobic bottom waters developed, oxidizing the iron and thus removing it from solution1,2. In contrast, I argue here that anoxic bottom waters probably persisted until well after the deposition of banded iron formations ceased; I also propose that sulphide, rather than oxygen, was responsible for removing iron from deep ocean water. The sulphur-isotope record supports this hypothesis as it indicates increasing concentrations of oceanic sulphate, starting around 2.3 Gyr6, leading to increasing rates of sulphide production by sulphate reduction. The increase in sulphide production became sufficient, around 1.8 Gyr, to precipitate the total flux of iron into the oceans. I suggest that aerobic deep-ocean waters did not develop until the Neoproterozoic era (1.0 to ∼0.54 Gyr), in association with a second large oxidation of the Earth's surface. This new model is consistent with the emerging view of Precambrian sulphur geochemistry and the chemical events leading to the evolution of animals, and it is fully testable by detailed geochemical analyses of preserved deep-water marine sediments.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Cloud, P. E. J Aworking model of the primitive Earth. Am. J. Sci. 272, 537–548 (1972).
Google Scholar - Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, Princeton, (1984)).
Google Scholar - Holland, H. D. & Beukes, N. Apaleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. Am. J. Sci. 290-A, 1–34 (1990).
Google Scholar - Des Marais, D. J., Strauss, H. Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992).
Article ADS CAS Google Scholar - Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996).
Google Scholar - Hayes, J. M., Lambert, I. B. & Strauss, H. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schoff, J. W. & Klein, C.) 129–134 (Cambridge Univ. Press, (1992)).
Google Scholar - Sarmiento, J. L., Herbert, T. D. & Toggweiler, J. R. Causes of anoxia in the world ocean. Glob. Biogeochem. Cycles 2, 115–128 (1988).
Google Scholar - Ridge/vents Workshop Group. In Global Impact of Submarine Hydrothermal Processes (eds Kadko, D., Baker, E., Alt, J. & Baross, J. 4–15 (NSF RIDGE Initiative and NOAA Vents Program, (1994)).
- Shaffer, G. Biogeochemical cycling in the global ocean 2. New production, Redfield ratios, and remineralization in the organic pump. J. Geophys. Res. 101, 3723–3745 (1996).
Google Scholar - Emerson, S., Quay, P. D., Stump, C. & Schudlich, R. Chemical tracers of productivity and respiration in the subtropical Pacific Ocean. J. Geophys. Res. 100, 15873–15887 (1995).
Google Scholar - Knoll, A. H. in Origin and Early Evolution of the Metazoa (eds Lipps, J. H. & Signor, P. W.) 53–84 (Plenum, New York, (1992)).
Book Google Scholar - Canfield, D. E. & Teske, A. Late proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127–132 (1996).
Article ADS CAS Google Scholar - Berkner, L. V. & Marshall, L. C. On the origin and rise of oxygen concentration in the Earth's atmosphere. J. Atmos. Res. 22, 225–261 (1965).
Google Scholar - Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–838 (1986).
Article ADS CAS Google Scholar - Cameron, E. M. Sulphate and sulphate reduction in early Precambrian oceans. Nature 296, 145–148 (1982).
Article ADS CAS Google Scholar - Harrison, A. G. & Thode, H. G. Mechanisms of the bacterial reduction of sulfate from isotope fractionation studies. Trans. Faraday Soc. 53, 84–92 (1958).
Google Scholar - Ohmoto, H., Kakegawa, T. & Lowe, D. R. 3.4-billion-year-old biogenic pyrites from Barberton, South Africa: Sulfur isotope evidence. Science 262, 555–557 (1993).
Google Scholar - Habicht, K. S. & Canfield, D. E. Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature 382, 342–343 (1996).
Article ADS CAS Google Scholar - van Cappellen, P. & Wang, Y. in Metal Contaminated Sediments (ed. Allen, H. E.) 21–64 (Ann Arbor, Chelsea, Michigan, (1995)).
Google Scholar - Berner, R. A. & Raiswell, R. Burial or organic carbon and pyrite sulfur in sediments over geologic time. Geochim. Cosmochim. Acta 47, 855–862 (1983).
Google Scholar - Beukes, N. J. & Klein, C. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schoff, J. W. & Klein, C.) 147–151 (Cambridge Univ. Press, (1992)).
Google Scholar - Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic re-organization of biogeochemical cycles. Nature 376, 53–56 (1995).
Article ADS CAS Google Scholar - Schieber, J. Anomalous iron distribution in shales as a manifestation of “non-clastic iron” supply to sedimentary basins: relevance for pyritic shales, base-metal mineralization, and oolitic ironstone deposits. Mineral. Deposita 30, 294–302 (1995).
Google Scholar - Canfield, D. E., Lyons, T. W. & Raiswell, R. Amodel for iron deposition to euxinic Black Sea sediments. Am. J. Sci. 296, 818–834 (1996).
Google Scholar - Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).
Google Scholar - Imbus, S. W., Macko, S., Elmore, R. D. & Engel, M. Stable isotope (C,S,N) and molecular studies on the Precambrian Nonesuch Shale (Wisconsin–Michigan, USA): evidence for differential preservation rates, depositional environment and hydrothermal influence. Chem. Geol. 101, 255–281 (1992).
Google Scholar - Jackson, M. J. & Raiswell, R. Sedimentology and carbon–sulphur geochemistry of the Velkerri Formation, a mid-Proterozoic potential oil source in northern Australia. Precambr. Res. 54, 81–108 (1991).
Google Scholar - Vidal, G. & Nystuen, J. P. Micropaleontology, depositional environment, and biostratigraphy of the Upper Proterozoic Hedmark Group, Southern Norway. Am. J. Sci. 290-A, 170–211 (1990).
Google Scholar - Canfield, D. E. The geochemistry of river particulates from the continental United States: major elements. Geochim. Cosmochim. Acta 61, 3349–3365 (1997).
Google Scholar - Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of mountainous rivers. J. Geol. 100, 525–544 (1992).
Google Scholar
Acknowledgements
I thank J. Hayes, B. Thamdrup, D. Des Marais and A. Knoll for comments on the manuscript. Financial support came from the Danish National Science Research Council (SNF) and the Danish National Research Foundation (Danmarks Grundforskningsfond). This Letter is dedicated to the memory of H. Jannasch.
Author information
Authors and Affiliations
- Biological Institute, Odense University, Campusvej 55, 5230, Odense M, Denmark
D. E. Canfield
Authors
- D. E. Canfield
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toD. E. Canfield.
Rights and permissions
About this article
Cite this article
Canfield, D. A new model for Proterozoic ocean chemistry.Nature 396, 450–453 (1998). https://doi.org/10.1038/24839
- Received: 23 October 1997
- Accepted: 17 September 1998
- Issue Date: 03 December 1998
- DOI: https://doi.org/10.1038/24839