Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP (original) (raw)
References
Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. & Noda, M. Aras-related gene with transformation suppressor activity. Cell56, 77–84 (1989). ArticleCASPubMed Google Scholar
Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L. & Nadler, L. M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science278, 124–128 (1997). ArticleCASPubMed Google Scholar
Reedquist, K. A. & Bos, J. L. Costimulation through CD28 suppresses T cell receptor-dependent activation of the Ras-like small GTPase Rap1 in human T lymphocytes. J. Biol. Chem.273, 4944–4949 (1998). ArticleCASPubMed Google Scholar
York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature392, 622–626 (1998). ArticleADSCASPubMed Google Scholar
M'Rabet, L. et al. Activation of Rap1 in human neutrophils. Blood92, 2133–2140 (1998). CASPubMed Google Scholar
Zwartkruis, F. J. T., Wolthuis, R. M. F., Nabben, N. M. J. M., Franke, B. & Bos, J. L. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J.17, 5905–5912 (1998). ArticleCASPubMedPubMed Central Google Scholar
Altschuler, D. L. & Ribeiro-Neto, F. Mitogenic and oncogenic properties of the small G protein Rap1b. Proc. Natl Acad. Sci. USA95, 7475–7479 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Altschuler, D. L., Peterson, S. N., Ostrowski, M. C. & Lapetina, E. G. Cyclic AMP-dependent activation of Rap1b. J. Biol. Chem.270, 10373–10376 (1995). ArticleCASPubMed Google Scholar
Vossler, M. R. et al. cAMP activates MAP kinase and Elk 1 through a B-raf- and Rap1 dependent pathway. Cell89, 74–82 (1997). Article Google Scholar
Singh, T. J. et al. Characterization of a cyclic AMP-resistant Chinese hamster ovary cell mutant containing both wild-type and mutant species of type I regulatory subunit of cyclic AMP-dependent protein kinase. J. Biol. Chem.260, 13927–13933 (1985). CASPubMed Google Scholar
Ebinu, J. O. et al. RasGRP, a Ras guanyl nucelotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science280, 1082–1086 (1998). ArticleADSCASPubMed Google Scholar
Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci.19, 235–263 (1996). ArticleCASPubMed Google Scholar
Shabb, J. B., Ng, L. & Corbin, J. D. One amino acid change produces a high affinity cGMP-binding site in cAMP-dependent protein kinase. J. Biol. Chem.265, 16031–16034 (1990). CASPubMed Google Scholar
Gotoh, T. et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol. Cell. Biol.15, 6746–6753 (1995). ArticleCASPubMedPubMed Central Google Scholar
Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature394, 337–343 (1998). ArticleADSCASPubMed Google Scholar
Ponting, C. P. & Bork, P. Pleckstrins repeat performance: a novel domain in G-protein signaling? Trends Biochem. Sci.21, 245–256 (1996). ArticleCASPubMed Google Scholar
Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. & Perrimon, N. Differential recruitment of dishevelled provides signaling specificty in the planar cell polarity and wingless signaling pathways. Genes Dev.12, 2610–2622 (1998). ArticleCASPubMedPubMed Central Google Scholar
van den Berghe, N., Cool, R. H., Horn, G. & Wittinghofer, A. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene15, 845–850 (1997). ArticleCASPubMed Google Scholar
Dremier, S. et al. Activation of cyclic AMP-dependent kinase is required but may not be sufficient to mimic cyclic AMP-dependent DNA synthesis and thyroglobulin expression in dog thyroid cells. Mol. Cell. Biol.17, 6717–6726 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cook, S. J., Rubinfeld, B., Albert, I. & McCormick, F. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J.12, 3475–3485 (1993). ArticleCASPubMedPubMed Central Google Scholar
Rannels, S. R. & Corbin, J. D. Using analogs to study selectivity and cooperativity of cyclin nucleotide binding sites. Methods Enzymol.99, 168–175 (1983). ArticleCASPubMed Google Scholar
Verheijen, M. G. H. & Defize, L. H. K. Parathyroid hormone inhibits mitogen-activated protein kinase activation in osteosarcoma cells via a protein kinase A-dependent pathway. Endocrinology136, 3331–3337 (1995). ArticleCASPubMed Google Scholar
Herberg, F. W., Zimmermann, B., McGlone, M. & Taylor, S. S. Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface. Protein Sci.6, 569–579 (1997). ArticleCASPubMedPubMed Central Google Scholar