Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP (original) (raw)

References

  1. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. & Noda, M. Aras-related gene with transformation suppressor activity. Cell 56, 77–84 (1989).
    Article CAS PubMed Google Scholar
  2. Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L. & Nadler, L. M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278, 124–128 (1997).
    Article CAS PubMed Google Scholar
  3. Reedquist, K. A. & Bos, J. L. Costimulation through CD28 suppresses T cell receptor-dependent activation of the Ras-like small GTPase Rap1 in human T lymphocytes. J. Biol. Chem. 273, 4944–4949 (1998).
    Article CAS PubMed Google Scholar
  4. York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626 (1998).
    Article ADS CAS PubMed Google Scholar
  5. M'Rabet, L. et al. Activation of Rap1 in human neutrophils. Blood 92, 2133–2140 (1998).
    CAS PubMed Google Scholar
  6. Zwartkruis, F. J. T., Wolthuis, R. M. F., Nabben, N. M. J. M., Franke, B. & Bos, J. L. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 17, 5905–5912 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  7. Franke, B., Akkerman, J. W. & Bos, J. L. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 16, 252–259 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  8. Altschuler, D. L. & Ribeiro-Neto, F. Mitogenic and oncogenic properties of the small G protein Rap1b. Proc. Natl Acad. Sci. USA 95, 7475–7479 (1998).
    Article ADS CAS PubMed PubMed Central Google Scholar
  9. Altschuler, D. L., Peterson, S. N., Ostrowski, M. C. & Lapetina, E. G. Cyclic AMP-dependent activation of Rap1b. J. Biol. Chem. 270, 10373–10376 (1995).
    Article CAS PubMed Google Scholar
  10. Vossler, M. R. et al. cAMP activates MAP kinase and Elk 1 through a B-raf- and Rap1 dependent pathway. Cell 89, 74–82 (1997).
    Article Google Scholar
  11. Singh, T. J. et al. Characterization of a cyclic AMP-resistant Chinese hamster ovary cell mutant containing both wild-type and mutant species of type I regulatory subunit of cyclic AMP-dependent protein kinase. J. Biol. Chem. 260, 13927–13933 (1985).
    CAS PubMed Google Scholar
  12. Ebinu, J. O. et al. RasGRP, a Ras guanyl nucelotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).
    Article ADS CAS PubMed Google Scholar
  13. Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci. 19, 235–263 (1996).
    Article CAS PubMed Google Scholar
  14. Shabb, J. B., Ng, L. & Corbin, J. D. One amino acid change produces a high affinity cGMP-binding site in cAMP-dependent protein kinase. J. Biol. Chem. 265, 16031–16034 (1990).
    CAS PubMed Google Scholar
  15. Gotoh, T. et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol. Cell. Biol. 15, 6746–6753 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  16. Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998).
    Article ADS CAS PubMed Google Scholar
  17. Ponting, C. P. & Bork, P. Pleckstrins repeat performance: a novel domain in G-protein signaling? Trends Biochem. Sci. 21, 245–256 (1996).
    Article CAS PubMed Google Scholar
  18. Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. & Perrimon, N. Differential recruitment of dishevelled provides signaling specificty in the planar cell polarity and wingless signaling pathways. Genes Dev. 12, 2610–2622 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  19. van den Berghe, N., Cool, R. H., Horn, G. & Wittinghofer, A. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene 15, 845–850 (1997).
    Article CAS PubMed Google Scholar
  20. Dremier, S. et al. Activation of cyclic AMP-dependent kinase is required but may not be sufficient to mimic cyclic AMP-dependent DNA synthesis and thyroglobulin expression in dog thyroid cells. Mol. Cell. Biol. 17, 6717–6726 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  21. Cook, S. J., Rubinfeld, B., Albert, I. & McCormick, F. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12, 3475–3485 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  22. Wolthuis, R. M. et al. Activation of the small GTPase Ral in platelets. Mol. Cell. Biol. 18, 2486–2491 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  23. Rannels, S. R. & Corbin, J. D. Using analogs to study selectivity and cooperativity of cyclin nucleotide binding sites. Methods Enzymol. 99, 168–175 (1983).
    Article CAS PubMed Google Scholar
  24. Verheijen, M. G. H. & Defize, L. H. K. Parathyroid hormone inhibits mitogen-activated protein kinase activation in osteosarcoma cells via a protein kinase A-dependent pathway. Endocrinology 136, 3331–3337 (1995).
    Article CAS PubMed Google Scholar
  25. Herberg, F. W., Zimmermann, B., McGlone, M. & Taylor, S. S. Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface. Protein Sci. 6, 569–579 (1997).
    Article CAS PubMed PubMed Central Google Scholar

Download references