DNA hypomethylation leads to elevated mutation rates (original) (raw)

References

  1. Fearon, E. R. & Vogelstein, B. Agenetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).
    CAS PubMed Google Scholar
  2. Laird, P. W. & Jaenisch, R. The role of DNA methylation in cancer genetics and epigenetics. Annu. Rev. Genet. 30, 441–464 (1996).
    Article CAS PubMed Google Scholar
  3. Lengauer, C., Kinzler, K. W. & Vogelstein, B. DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl Acad. Sci. USA 94, 2545–2550 (1997).
    Article ADS CAS PubMed PubMed Central Google Scholar
  4. Jeanpierre, M. et al. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2, 731–735 (1993).
    Article CAS PubMed Google Scholar
  5. Ji, W. et al. DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat. Res. 379, 33–41 (1997).
    Article CAS PubMed Google Scholar
  6. Haaf, T. The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes. Pharmacol. Ther. 65, 19–46 (1995).
    Article CAS PubMed Google Scholar
  7. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).
    Article CAS PubMed Google Scholar
  8. Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205 (1996).
    CAS PubMed Google Scholar
  9. Tucker, K. L. et al. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev. 10, 1008–1020 (1996).
    Article CAS PubMed Google Scholar
  10. Kendal, W. S. & Frost, P. Pitfalls and practice of Luria–Delbrück fluctuation analysis: a review. Cancer Res. 48, 1060–1065 (1988).
    CAS PubMed Google Scholar
  11. Shulman, M. J., Collins, C., Connor, A., Read, L. R. & Baker, M. D. Interchromosomal recombination is suppressed in mammalian somatic cells. EMBO J. 14, 4102–4107 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  12. Jaenisch, R. DNA methylation and imprinting: why both? Trends Genet. 13, 323–329 (1997).
    Article CAS PubMed Google Scholar
  13. Petes, T. D., Malone, R. E. & Symington, L. S. in The Molecular and Cellular Biology of the Yeast Saccharomyces (eds Broach, J. R., Pringle, J. R. & Jones, E. W.) 407–521 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, (1991)).
    Google Scholar
  14. Proffitt, J. H., Davie, J. R., Swinton, D. & Hattman, S. 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 4, 985–988 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  15. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).
    CAS PubMed Google Scholar
  16. Sanford, J. P., Clark, H. J., Chapman, V. M. & Rossant, J. Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse. Genes Dev. 1, 1039–1046 (1987).
    Article CAS PubMed Google Scholar
  17. Maloisel, L. & Rossignol, J.-L. Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev. 12, 1381–1389 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  18. Hsieh, C.-L. & Lieber, M. R. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J. 11, 315–325 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  19. Engler, P., Weng, A. & Storb, U. Influence of CpG methylation and target splicing on V(D)J recombination in a transgenic substrate. Mol. Cell. Biol. 13, 571–577 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  20. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).
    Article CAS PubMed Google Scholar
  21. Wahls, W. P., Wallace, L. J. & Moore, P. D. Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60, 95–103 (1990).
    Article CAS PubMed Google Scholar
  22. Shiroishi, T., Koide, T., Yoshino, M., Sagai, T. & Moriwaki, K. Hotspots of homologous recombination in mouse meiosis. Adv. Biophys. 31, 119–132 (1995).
    Article CAS PubMed Google Scholar
  23. Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991).
    CAS PubMed Google Scholar
  24. Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).
    Article CAS PubMed Google Scholar
  25. Jackson-Grusby, L., Laird, P. W., Magge, S. N., Moeller, B. J. & Jaenisch, R. Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Porc. Natl. Acad. Sci. USA 94, 4681–4685 (1997).
    Article ADS CAS Google Scholar
  26. Beard, C., Li, E. & Jaenisch, R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev. 9, 2325–2334 (1995).
    Article CAS PubMed Google Scholar
  27. Melton, D. W., Konecki, D. S., Brennand, J. & Caskey, C. T. Structure, expression, and mutation of the hypoxanthine phosphoribosyltransferase gene. Proc. Natl. Acad. Sci. USA 81, 2147–2151 (1984).
    Article ADS CAS PubMed PubMed Central Google Scholar
  28. Dietrich, W. F. et al. Agenetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245 (1994).
    Article CAS PubMed Google Scholar

Download references