The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity (original) (raw)

References

  1. Lew, J.et al. Neuronal cdc-2-like kinase is a complex of cyclin-dependent kinase 5 and a novel brain-specific regulatory subunit. Nature 371, 423–425 (1994).
    Article ADS CAS Google Scholar
  2. Tsai, L.-H., Delalle, I., Caviness, V. S. J, Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).
    Article ADS CAS Google Scholar
  3. Delalle, I., Bhide, P. G., Caviness, V. S. J & Tsai, L.-H. Temporal and spatial patterns of expression ofp35, a regulatory subunit of cyclin-dependent kinase 5, in the nervous system of the mouse. J.Neurocytol. 26, 283–296 (1997).
    Article CAS Google Scholar
  4. Tomizawa, K.et al. Localization and developmental changes in the neuron-specific cyclin-dependent kinase 5 activator (p35nck5a) in the rat brain. Neuroscience 74, 519–529 (1996).
    Article CAS Google Scholar
  5. Chae, T.et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).
    Article CAS Google Scholar
  6. Ohshima, T.et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA 93, 11173–11178 (1996).
    Article ADS CAS Google Scholar
  7. Kwon, Y. T. K. & Tsai, L.-H. Anovel disruption of cortical development in p35−/− mice distinct from reeler. J. Comp. Neurol. 395, 510–522 (1998).
    Article CAS Google Scholar
  8. Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F. & Tsai, L.-H. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10, 816–825 (1996).
    Article CAS Google Scholar
  9. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).
    Article CAS Google Scholar
  10. Luo, L.et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).
    Article ADS CAS Google Scholar
  11. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodeling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201–1211 (1997).
    Article CAS Google Scholar
  12. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 (1997).
    Article CAS Google Scholar
  13. Zipkin, I. D., Kindt, R. M. & Kenyon, C. J. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 90, 883–894 (1997).
    Article CAS Google Scholar
  14. Lim, L., Manser, E., Leung, T. & Hall, C. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signaling pathways. Eur. J. Biochem. 242, 171–185 (1996).
    Article CAS Google Scholar
  15. Sells, M. A. & Chernoff, J. Emerging from the Pak: the p21-activated protein kinase family. Trends Cell Biol. 7, 162–166 (1997).
    Article CAS Google Scholar
  16. Sells, M. A., Knaus, U. G., Bagrodia, S., Ambrose, D. M., Bokoch, G. M. & Chernoff, J. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997).
    Article CAS Google Scholar
  17. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).
    Article ADS CAS Google Scholar
  18. Manser, E.et al. Expression and constitutively active α-Pak reveals effects of the kinase on actin and focal complexes. Mol. Cell. Biol. 17, 1129–1143 (1997).
    Article CAS Google Scholar
  19. van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054 (1993).
    Article ADS CAS Google Scholar
  20. Lamarche, N.et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 (1996).
    Article CAS Google Scholar
  21. Westwick, J. K.et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17, 1324–1335 (1997).
    Article CAS Google Scholar
  22. Kinsella, B. T., Erdman, R. A. & Maltese, W. A. Carboxyl-terminal isoprenilation of ras-related GTP-binding proteins encoded by rac1, rac2 and ra1A. J. Biol. Chem. 266, 9786–9794 (1991).
    CAS Google Scholar
  23. Manser, E.et al. Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J. Biol. Chem. 270, 25070–25078 (1995).
    Article CAS Google Scholar
  24. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. & Lim, L. Abrain serine/threonine protein kinase activated by cdc42 and rac1. Nature 367, 40–46 (1994).
    Article ADS CAS Google Scholar
  25. Lu, W., Katz, S., Gupta, R. & Mayer, B. J. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol. 7, 85–94 (1996).
    Article Google Scholar
  26. Meijer, L.et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527–536 (1997).
    Article CAS Google Scholar
  27. Dharmawardhane, S., Sanders, L. C., Martin, S. S., Daniels, R. H. & Bokoch, G. M. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J.Cell Biol. 138, 1265–1278 (1997).
    Article CAS Google Scholar
  28. Daniels, R. H., Hall, P. S. & Bokoch, G. M. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17, 754–764 (1998).
    Article CAS Google Scholar
  29. Patrick, G. N., Zhou, P., Kwon, Y. T., Howley, P. M. & Tsai, L.-H. p35, the neuronal specific activator of cdk5, is degraded by the ubiquitin-proteasome pathway. J. Biol. Chem.(in the press).
  30. Dynlacht, B. D., Moberg, K., Lees, J. A., Harlow, E. & Zhu, L. Specific regulation of E2F family members by cyclin-dependent kinases. Mol. Cell. Biol. 17, 3867–3875 (1997).
    Article CAS Google Scholar

Download references