Why the genome does not congeal (original) (raw)

Nature volume 268, pages 693–696 (1977)Cite this article

Abstract

Since the genes in any given organism have evolved together to produce an adaptive phenotype, one might expect that rearrangement by chromosomal recombination would be maladaptive and thus wiped out by natural selection. This article reviews various theories that explain why, on the contrary, recombination is almost universal.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Turner, J. R. Evolution 21, 645 (1967).
    Article PubMed Google Scholar
  2. Maynard Smith, J. J. theor. Biol. 30, 319 (1971).
    Article Google Scholar
  3. Fisher, R. A. The Genetical Theory of Natural Selection (Oxford University Press, Oxford, 1930).
    Book Google Scholar
  4. Kimura, M. Evolution 10, 278 (1956).
    Article Google Scholar
  5. Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia University Press, New York, 1974).
    Google Scholar
  6. Charlesworth, B. & Charlesworth, D. Genet. Res. 25, 267 (1976).
    Article Google Scholar
  7. Abdullah, N. F. & Charlesworth, B. Genetics 76, 447 (1974).
    CAS PubMed PubMed Central Google Scholar
  8. Allard, R. W. Genetics 48, 1389 (1963).
    CAS PubMed PubMed Central Google Scholar
  9. Catcheside, D. G. Austr. J. biol. Sci. 28, 213 (1975).
    Article CAS Google Scholar
  10. Chinnici, J. P. Genetics 69, 71 (1971).
    CAS PubMed PubMed Central Google Scholar
  11. Dewess, A. A. Genetics 64, 516 (1970).
    Google Scholar
  12. Detlefson, J. A. & Roberts, E. J. expl. Zool. 32, 333 (1921).
    Article Google Scholar
  13. Kidwell, M. G. Genetics 70, 419 (1972).
    CAS PubMed PubMed Central Google Scholar
  14. Shaw, D. D. Chromosoma 37, 297 (1972).
    Article CAS PubMed Google Scholar
  15. Charlesworth, B. Genetics 83, 181 (1976).
    MathSciNet CAS PubMed PubMed Central Google Scholar
  16. Slatkin, M. Genetics 81, 787 (1975).
    CAS PubMed PubMed Central Google Scholar
  17. Williams, G. C. & Mitton, J. B. J. theor. Biol. 39, 545 (1973).
    Article CAS PubMed Google Scholar
  18. Williams, G. C. Sex and Evolution (Princeton University Press, Princeton, 1975).
    Google Scholar
  19. Maynard Smith, J. J. theor. Biol. (1976).
  20. Leigh, E. G. Amer. Natur. 104, 301 (1970).
    Article Google Scholar
  21. Cox, E. C. & Gibson, T. C. Genetics 77, 169 (1974).
    CAS PubMed PubMed Central Google Scholar
  22. Strobeck, C., Maynard Smith, J. & Charlesworth, B. Genetics 82, 547 (1976).
    CAS PubMed PubMed Central Google Scholar
  23. Felsenstein, J. Genetics 78, 737 (1974).
    CAS PubMed PubMed Central Google Scholar
  24. Hill, W. G. & Robertson, A. Genet. Res. 8, 269 (1966).
    Article CAS PubMed Google Scholar
  25. Felenstein, J. & Yokoyama, S. Genetics 83, 845 (1976).
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. School of Biological Sciences, University of Sussex, Falmer, Brighton, Sussex, BN1 9QG
    J. Maynard Smith

Authors

  1. J. Maynard Smith
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Smith, J. Why the genome does not congeal.Nature 268, 693–696 (1977). https://doi.org/10.1038/268693a0

Download citation

This article is cited by