Structure of a glutamate-receptor ligand-binding core in complex with kainate (original) (raw)

References

  1. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).
    Article CAS Google Scholar
  2. Rogers, S. W. et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 265, 648–651 (1994).
    Article ADS CAS Google Scholar
  3. Stern-Bach, Y. et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357 (1994).
    Article CAS Google Scholar
  4. Kuusinen, A., Arvola, M. & Keinänen, K. Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J. 14, 6327–6332 (1995).
    Article CAS Google Scholar
  5. Paas, Y. The macro- and microarchitectures of the ligand-binding domain of glutamate receptors. Trends Neurosci. 21, 117–125 (1998).
    Article CAS Google Scholar
  6. Chen, G.-Q., Sun, Y., Jin, R. & Gouaux, E. Probing the ligand binding domain of the GluR2 receptor by proteolysis and deletion mutagenesis defines domain boundaries and yields a crystallizable construct. Protein Sci. (in the press).
  7. Sommer, B. et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585 (1990).
    Article ADS CAS Google Scholar
  8. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).
    Article ADS CAS Google Scholar
  9. Nakanishi, N., Shneider, N. A. & Axel, R. Afamily of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5, 569–581 (1990).
    Article CAS Google Scholar
  10. Sun, Y.-J., Rose, J., Wang, B.-C. & Hsiao, C.-D. The structure of glutamine-binding protein complexed with glutamine at 1.94 å resolution: comparisons with other amino acid binding proteins. J. Mol. Biol. 278, 219–229 (1998).
    Article CAS Google Scholar
  11. Keinänen, K., Arvola, M., Kuusinen, A. & Johnson, M. Ligand recognition in glutamate receptors: insights from mutagenesis of the soluble α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-binding domain of glutamate receptor type D (GluR-D). Biochem. Soc. Trans. 25, 835–838 (1997).
    Article Google Scholar
  12. Laube, B., Hirai, H., Sturgess, M., Betz, H. & Kuhse, J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18, 493–503 (1997).
    Article CAS Google Scholar
  13. Paas, Y., Eisenstein, M., Medevielle, F., Teichberg, V. I. & Devillers-Thiéry, A. Identification of the amino acid subsets accounting for the ligand binding specificity of a glutamate receptor. Neuron 17, 979–990 (1996).
    Article CAS Google Scholar
  14. Hirai, H., Kirsch, J., Laube, B., Betz, H. & Kuhse, J. The glycine binding site of the _N_-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc. Natl Acad. Sci. USA 93, 6031–6036 (1996).
    Article ADS CAS Google Scholar
  15. Swanson, G. T., Gereau, R. W. IV, Green, T. & Heinemann, S. F. Identification of amino acid residues that control functional behavior in GluR5 and GluR6 kainate receptors. Neuron 19, 913–926 (1997).
    Article CAS Google Scholar
  16. Jacobson, B. L., He, J. J., Lemon, D. D. & Quiocho, F. A. Interdomain salt bridges modulate ligand-induced domain motion of the sulfate receptor protein for active transport. J. Mol. Biol. 223, 27–30 (1992).
    Article CAS Google Scholar
  17. Li, F., Owens, N. & Verdoorn, T. A. Functional effects of mutations in the putative agonist binding region of recombinant α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Mol. Pharmacol. 47, 148–154 (1995).
    CAS PubMed Google Scholar
  18. Aizenman, E., Lipton, S. A. & Loring, R. H. Selective modulation of NMDA responses by reduction and oxidation. Neuron 2, 1257–1263 (1989).
    Article CAS Google Scholar
  19. Sutcliffe, M. J., Wo, Z. G. & Oswald, R. E. Three-dimensional models of non-NMDA glutamate receptors. Biophys. J. 70, 1575–1589 (1996).
    Article ADS CAS Google Scholar
  20. Partin, K. M., Bowie, D. & Mayer, M. L. Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron 14, 833–843 (1995).
    Article CAS Google Scholar
  21. Partin, K. M., Fleck, M. W. & Mayer, M. L. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J. Neurosci. 16, 6634–6647 (1996).
    Article CAS Google Scholar
  22. Otwinowsky, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    Article Google Scholar
  23. Cowtan, K. D. & Main, P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr. D 42, 43–48 (1996).
    Article Google Scholar
  24. Read, R. J. Model phases: probabilities and bias. Methods Enzymol. 277, 110–128 (1997).
    Article CAS Google Scholar
  25. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997).
    Article CAS Google Scholar
  26. Brünger, A. T. X-PLOR. Version 3.1. A System for X-ray Crystallography and NMR 1–382 (Yale Univ. Press, New Haven, 1992).
    Google Scholar
  27. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
  28. Hollmann, M., Maron, C. & Heinemann, S. _N_-Glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13, 1331–1343 (1994).
    Article CAS Google Scholar
  29. Lomeli, H. et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709–1713 (1994).
    Article ADS CAS Google Scholar

Download references