The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3 (original) (raw)
Lopingco, M. C. & Perkins, A. S. Molecular analysis of Evi1, a zinc finger oncogene involved in myeloid leukemia. Cur. Top. Microbiol. Immunol.211, 211–222 (1996). CAS Google Scholar
Morishita, K. et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc. Natl Acad. Sci. USA89, 3937–3941 (1992). ArticleADSCAS Google Scholar
Mitani, K. et al. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J.13, 504–510 (1994). ArticleCAS Google Scholar
Ogawa, S. et al. Structurally altered Evi-1 protein generated in the 3q21q26 syndrome. Oncogene13, 183–191 (1996). CASPubMed Google Scholar
Ogawa, S. et al. Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia10, 788–794 (1996). CASPubMed Google Scholar
Morishita, K. et al. Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell54, 831–840 (1988). ArticleCAS Google Scholar
Tanaka, T. et al. Evi-1 raises AP-1 activity and stimulates c-fos promoter transactivation with dependence on the second zinc finger domain. J. Biol. Chem.269, 24020–24026 (1994). ArticleCAS Google Scholar
Bartholomew, C., Kilbey, A., Clark, A. M. & Walker, M. The Evi-1 proto-oncogene encodes a transcriptional repressor activity associated with transformation. Oncogene14, 569–577 (1997). ArticleCAS Google Scholar
Kurokawa, M. et al. The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene11, 833–840 (1995). CASPubMed Google Scholar
Morishita, K., Parganas, E., Matsugi, T. & Ihle, J. N. Expression of the Evi-1 zinc finger gene in 32Dc13 myeloid cells blocks granulocytic differentiation in response to granulocyte colony-stimulating factor. Mol. Cell. Biol.12, 183–189 (1992). CASPubMedPubMed Central Google Scholar
Kreider, B. L., Orkin, S. H. & Ihle, J. N. Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the Evi-1 myeloid-transforming gene. Proc. Natl Acad. Sci. USA90, 6454–6458 (1993). ArticleADSCAS Google Scholar
Massagué, J. The transforming growth factor-β family. Annu. Rev. Cell Biol.6, 597–641 (1990). Article Google Scholar
Zhang, Y., Feng, X., We, R. & Derynck, R. Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature383, 168–172 (1996). ArticleADSCAS Google Scholar
Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. Mechanism of activation of the TGF-β receptor. Nature370, 341–347 (1994). ArticleADSCAS Google Scholar
Macias-Silva, M. et al. MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell87, 1215–1224 (1996). ArticleCAS Google Scholar
Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature371, 257–261 (1994). ArticleADSCAS Google Scholar
Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M. & Massagué, J. Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell62, 175–185 (1990). ArticleCAS Google Scholar
Derynck, R. & Zhang, Y. Intracellular signalling: the mad way to do it. Curr. Biol.6, 1226–1229 (1996). ArticleCAS Google Scholar
Massagué, J. TGFβ signaling: receptors, transducers, and Mad proteins. Cell85, 947–950 (1996). Article Google Scholar
Wrana, J. L. & Attisano, L. MAD-related proteins in TGFβ signaling. Trends Genet.12, 493–496 (1996). ArticleCAS Google Scholar
Wu, R.-Y., Zhang, Y., Feng, X.-H. & Derynck, R. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol. Cell. Biol.17, 2521–2528 (1997). ArticleCAS Google Scholar
Nakao, A. et al. TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J.16, 5353–5362 (1997). ArticleCAS Google Scholar
Wieser, R., Wrana, J. L. & Massagué, J. GS domain mutations that constitutively activate T β R-I, the downstream signaling component in the TGF-β receptor complex. EMBO J.14, 2199–2208 (1995). ArticleCAS Google Scholar
Yingling, J. M. et al. Tumor suppressor Smad4 is a transforming growth factor β-inducible DNA binding protein. Mol. Cell. Biol.17, 7019–7028 (1997). ArticleCAS Google Scholar
Tanaka, T. et al. Dual functions of the AML1/Evi-1 chimeric protein in the mechanism of leukemogenesis in t(3;21) leukemias. Mol. Cell. Biol.15, 2383–2392 (1995). ArticleCAS Google Scholar
Lagna, G., Hata, A., Hemmati, B. A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature383, 832–836 (1996). ArticleADSCAS Google Scholar
Hata, A. S. L. R., Wotton, D., Lagna, G. & Massagué, J. Mutations increasing autoinhibition inactive tumor suppressors Smad2 and Smad4. Nature388, 82–87 (1997). ArticleCAS Google Scholar
Takebe, Y. et al. SRα promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol. Cell. Biol.8, 466–472 (1988). CASPubMedPubMed Central Google Scholar
Kurokawa, M. et al. Aconserved cysteine residue in the runt homology domain of AML1 is required for the DNA binding ability and the transforming activity on fibroblasts. J. Biol. Chem.271, 16870–16876 (1996). ArticleCAS Google Scholar