Platelet-derived growth factor prevents G0 growth arrest (original) (raw)

Nature volume 281, pages 390–392 (1979)Cite this article

Abstract

Baserga1 has summarised evidence that there are two growth states in which cells have a diploid content of DNA; G1—the interval between mitosis and S phase in exponentially growing cultures—and G0, a quiescent state entered only when conditions for growth are suboptimal. G0 can be distinguished from G1 by temporal measurements; for BALB/c 3T3 cells, the lag time between G0 and S phase is never shorter than 12 h (ref. 2), whereas in exponentially growing cells the mean lag time between mitosis and S (G1 by definition) lasts 5–6 h (ref. 3). G0 can also be distinguished from G1 by some biochemical parameters including G0- and G1-specific intracellular proteins4,5. SV40- or polyoma virus-transformed cells cannot enter G0 to become quiescent6–9. Serum induces the growth of BALB/c 3T3 cells in tissue culture. It sustains the growth of exponentially replicating populations, and causes density-inhibited cells to leave G0 and replicate10–12. Serum contains several sets of hormonal growth factors which have recently been defined2,13,14. One of these hormones, the platelet-derived growth factor (PDGF), is released into serum during the clotting process; PDGF is absent in platelet-poor plasma, the liquid portion of unclotted blood15–19. It promotes the growth of G0-arrested cells2,16 by stimulating cells to become ‘competent’ to enter the S phase2; plasma allows these competent cells to progress through G0/G1, synthesise DNA2,20 and divide13. We now show that PDGF has a second function. It prevents replicating cells from entering G0.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Augenlicht, L. & Baserga, R. Expl Cell Res. 89, 255–262 (1974).
    Article CAS Google Scholar
  2. Pledger, W. J., Stiles, C. D., Antoniades, H. N. & Scher, C. D. Proc. natn. Acad. Sci. U.S.A. 74, 4481–4485 (1977).
    Article ADS CAS Google Scholar
  3. Yen, A. & Pardee, A. B. Expl Cell Res. 116, 103–113 (1978).
    Article CAS Google Scholar
  4. Farmer, S. R., Ben-Ze'ev, A., Benecke, B. & Penman, S. Cell 15, 627–637 (1978).
    Article CAS Google Scholar
  5. Riddle, V. G. H., Dubrow, R. & Pardee, A. B. Proc. natn. Acad. Sci. U.S.A. 76, 1298–1302 (1979).
    Article ADS CAS Google Scholar
  6. Pardee, A. B. Proc. natn. Acad. Sci. U.S.A. 71, 1286–1290 (1974).
    Article ADS CAS Google Scholar
  7. Baserga, R., Costlow, M. & Rovera, G. Fedn Proc. 32, 2115–2118 (1973).
    CAS Google Scholar
  8. Burstin, S. J. & Basilico, C. Proc. natn. Acad. Sci. U.S.A. 72, 2540–2544 (1975).
    Article ADS CAS Google Scholar
  9. Martin, R. G. & Stein, S. Proc. natn. Acad. Sci. U.S.A. 73, 1655–1659 (1976).
    Article ADS CAS Google Scholar
  10. Todaro, G. J., Lazar, G. K. & Green, H. J. cell. comp. Physiol. 66, 325–334 (1965).
    Article CAS Google Scholar
  11. Holley, R. W. & Kiernan, J. A. Proc. natn. Acad. Sci. U.S.A. 60, 300–304 (1968).
    Article ADS CAS Google Scholar
  12. Brooks, R. F. Nature 260, 248–250 (1976).
    Article ADS CAS Google Scholar
  13. Vogel, A., Raines, E., Kariya, B., Rivest, M. J. & Ross, R. Proc. natn. Acad. Sci. U.S.A. 75, 2810–2814 (1978).
    Article ADS CAS Google Scholar
  14. Stiles, C. D. et al. Proc. natn. Acad. Sci. U.S.A. 76, 1279–1283 (1979).
    Article ADS CAS Google Scholar
  15. Ross, R., Glomset, J., Kariya, B. & Harker, L. Proc. natn. Acad. Sci. U.S.A. 71, 1207–1210 (1974).
    Article ADS CAS Google Scholar
  16. Rutherford, R. B. & Ross, R. J. Cell Biol. 69, 196–203 (1976).
    Article CAS Google Scholar
  17. Kohler, N. & Lipton, A. Expl Cell Res. 87, 297–301 (1974).
    Article CAS Google Scholar
  18. Heldin, C. H., Wasteson, A. & Westermark, B. Expl Cell Res. 109, 429–437 (1977).
    Article CAS Google Scholar
  19. Antoniades, H. N., Scher, C. D. & Stiles, C. D. Proc. natn. Acad. Sci. U.S.A. 76, 1809–1813 (1979).
    Article ADS CAS Google Scholar
  20. Pledger, W. J., Stiles, C. D., Antoniades, H. N. & Scher, C. D. Proc. natn. Acad. Sci. U.S.A. 75, 2839–2843 (1978).
    Article ADS CAS Google Scholar
  21. Stiles, C. D., Isberg, R., Pledger, W. J., Antoniades, H. N. & Scher, C. D. J. cell. Physiol. 99, 395–406 (1979).
    Article CAS Google Scholar
  22. Shimke, R. T., Kaufman, R. J., Alt, F. W. & Kellems, R. F. Science 202, 1051–1055 (1978).
    Article ADS Google Scholar
  23. Brooks, R. F. Cell 12, 311–317 (1977).
    Article CAS Google Scholar
  24. Smith, J. A. & Martin, L. Proc. natn. Acad. Sci. U.S.A. 70, 1263–1267 (1973).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Hematology-Oncology, Sidney Farber Cancer Institute and Children's Hospital Medical Center, Department of Pediatrics,
    Charles D. Scher & Marilyn E. Stone
  2. Laboratory of Tumor Biology, Sidney Farber Cancer Institute, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, 02115
    Charles D. Stiles

Authors

  1. Charles D. Scher
    You can also search for this author inPubMed Google Scholar
  2. Marilyn E. Stone
    You can also search for this author inPubMed Google Scholar
  3. Charles D. Stiles
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Scher, C., Stone, M. & Stiles, C. Platelet-derived growth factor prevents G0 growth arrest.Nature 281, 390–392 (1979). https://doi.org/10.1038/281390a0

Download citation

This article is cited by