A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock (original) (raw)

References

  1. Pittendrigh, C. S. Circadian rhythms and the circadian organization of living organisms. Cold Spring Harb. Symp. Quant. Biol. 25, 159–184 (1960).
    Article CAS Google Scholar
  2. De Coursey, P. J. Daily light sensitivity rhythm in a rodent. Science 131, 33–35 (1960).
    Article ADS CAS Google Scholar
  3. Ding, J. M. et al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717 (1994).
    Article ADS CAS Google Scholar
  4. Prosser, R. A. & Gillette, M. U. The mammalian circadian clock in the suprachiasmatic nucleus is reset in vitro by cAMP. J. Neurosci. 9, 1073–1081 (1989).
    Article CAS Google Scholar
  5. Prosser, R. A., McArthur, A. J. & Gillette, M. U. cGMP induces phase shifts of a mammalian circadian pacemaker at night, in antiphase to cAMP effects. Proc. Natl Acad. Sci. USA 86, 6812–6815 (1989).
    Article ADS CAS Google Scholar
  6. Liu, C., Ding, J. M., Faiman, L. E. & Gillette, M. U. Coupling of muscarinic cholinergic receptors and cGMP in nocturnal regulation of the suprachiasmatic circadian clock. J. Neurosci. 17, 659–666 (1997).
    Article CAS Google Scholar
  7. Weber, E. T., Gannon, R. L. & Rea, M. A. cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci. Lett. 197, 227–230 (1995).
    Article CAS Google Scholar
  8. Mathur, A., Golombek, D. A. & Ralph, M. R. cGMP-dependent kinase inhibitors block light-induced phase advances of circadian rhythms in vivo. Am. J. Physiol. 270, R1031–R1036 (1996).
    CAS PubMed Google Scholar
  9. Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R. & Dawson, A. P. Thapsigargin, a tumor promoter, discharges Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl Acad. Sci. USA 87, 2466–2470 (1990).
    Article ADS CAS Google Scholar
  10. McPherson, P. S. et al. The brain ryanodine receptor: A caffeine-sensitive calcium release channel. Neuron 7, 17–25 (1991).
    Article CAS Google Scholar
  11. Zatz, M. & Heath, J. R. Calcium and photoentrainment in chick pineal cells revisited: effects of caffeine, thapsigargin, EGTA, and light on the melatonin rhythm. J. Neurochem. 65, 1332–1341 (1995).
    Article CAS Google Scholar
  12. Dent, M., Diaz-Munoz, M., Chavez, J. L. & Aguilar-Roblero, R. Circadian variations of ryanodine receptor in the suprachiasmatic nucleus of the rat. Neurosci. Abstr. 22, 139.9 (1996).
    Google Scholar
  13. Brillantes, A. B. et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513–523 (1994).
    Article CAS Google Scholar
  14. Kaftan, E., Marks, A. R. & Ehrlich, B. E. Effects of rapamycin on ryanodine receptor/Ca2+-release channels from cardiac muscle. Circ. Res. 78, 990–997 (1996).
    Article CAS Google Scholar
  15. Snyder, S. H. & Sabatini, D. M. Immunophilins and the nervous system. Nature Med. 1, 32–37 (1995).
    Article CAS Google Scholar
  16. Parness, J. & Palnikar, S. S. Identification of dantrolene binding sites in porcine skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 270, 18465–18472 (1995).
    Article CAS Google Scholar
  17. Fredholm, B. B. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol. Toxicol. 76, 93–101 (1995).
    Article CAS Google Scholar
  18. Kunz, J. & Hall, M. N. Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. Trends Biochem. Sci. 18, 334–338 (1993).
    Article CAS Google Scholar
  19. McPherson, P. S. & Campbell, K. P. Solubilization and biochemical characterization of the high affinity ryanodine receptor from rabbit brain membranes. J. Biol. Chem. 265, 18454–18460 (1990).
    CAS PubMed Google Scholar
  20. McPherson, P. S. & Campbell, K. P. Characterization of the major brain form of the ryanodine receptor/Ca2+ release channel. J. Biol. Chem. 268, 19785–19790 (1993).
    CAS PubMed Google Scholar
  21. 1. Weber, E. T., Gannon, R. L., Michel, A. M., Gillette, M. U. & Rea, M. A. Nitric oxide synthase inhibitor blocks light-induced phase shifts of the circadian activity rhythm, but not c-fos expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Res. 692, 137–142 (1995).
    Article CAS Google Scholar
  22. Sitsapesan, R., McGarry, S. J. & Williams, A. J. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol. Sci. 16, 386–391 (1995).
    Article CAS Google Scholar
  23. Pawlikowska, L., Cottrell, S. E., Harms, M. B., Li, Y. & Rosenberg, P. A. Extracellular synthesis of cADP-ribose from nicotinamide-adenine dinculeotide by rat cortical astrocytes in culture. J. Neurosci. 16, 5372–5881 (1996).
    Article CAS Google Scholar
  24. Xu, L., Eu, J. P., Meissner, G. & Stamler, J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-nitrosylation. Science 279, 234–237 (1998).
    Article ADS CAS Google Scholar
  25. Obenaus, A., Mody, I. & Baimbridge, K. G. Dantrolene-Na+ blocks induction of long-term potentiation in hippocampal slices. Neurosci. Lett. 98, 172–178 (1989).
    Article CAS Google Scholar
  26. O'Mara, S. M., Rowan, M. J. & Anwyl, R. Dantrolene inhibits long-term depression and depotentiation of synaptic transmission in the rat dentate gyrus. Neuroscience 68, 621–624 (1995).
    Article CAS Google Scholar
  27. Hunter-Ensor, M., Ousley, A. & Sehgal, A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84, 677–685 (1996).
    Article CAS Google Scholar

Download references