Central cancellation of self-produced tickle sensation (original) (raw)

References

  1. Decety, J. Neural representation for action. Rev. Neurosci. 7, 285–297 (1996).
    Article CAS Google Scholar
  2. Jeannerod, M. The Neural and Behaviourial Organisation of Goal-Directed Movements (Oxford Univ. Press, 1988).
  3. Jeannerod, M. The Cognitive Neuroscience of Action (Blackwell, Cambridge, 1997).
    Google Scholar
  4. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 ( 1995).
    Article CAS Google Scholar
  5. Wolpert, D. M. Computational approaches to motor control. Trends Cog. Sci. 1, 209–216 (1997).
    Article CAS Google Scholar
  6. Frith, C. D. The Cognitive Neuropsychology of Schizophrenia (Lawrence Erlbaum, Hove, UK, 1992).
    Google Scholar
  7. Von Holst, E. Relations between the central nervous system and the peripheral organs. Brit. J. Anim. Behav. 2, 89–94 (1954).
    Article Google Scholar
  8. Sperry, R. W. Neural basis of spontaneous optokinetic responses produced by visual inversion. J. Comp. Physiol. Psychol. 43, 482– 489 (1950).
    Article CAS Google Scholar
  9. Weiskrantz, L., Elliot, J. & Darlington, C. Preliminary observations of tickling oneself. Nature 230, 598–599 ( 1971).
    Article CAS Google Scholar
  10. Claxton, G. Why can't we tickle ourselves? Percept. Motor Skills 41, 335–338 (1975).
    Article CAS Google Scholar
  11. Chapin, J. K. & Woodward, D. J. Somatic sensory transmission to the cortex during movement: gating of single cell responses to touch. Exp. Neurol. 78, 654–669 (1982).
    Article CAS Google Scholar
  12. Jiang, W., Chapman, C. E. & Lamarre, Y. Modulation of the cutaneous responsiveness of neurones in the primary somatosensory cortex during conditioned arm movements in the monkey. Exp. Brain Res. 84, 342– 354 (1991).
    Article CAS Google Scholar
  13. Chapman, C. E. Active versus passive touch: factors influencing the transmission of somatosensory signals to primary somatosensory cortex. Can. J. Physiol. Pharmacol . 72, 558–570 ( 1994).
    Article CAS Google Scholar
  14. Ito, M. Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurol. 7, 162–176 ( 1970).
    CAS PubMed Google Scholar
  15. Paulin, M. G. in Dynamic Interactions in Neural Networks: Models and Data (eds Arbib, E. M. A. & Amari, E. S.) 241–259 (Springer, 1989).
  16. Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. Is the cerebellum a Smith predictor? J. Motor Behav. 25, 203–216 (1993).
    Article CAS Google Scholar
  17. Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cog. Sci. 2, 338–347 ( 1998).
    Article CAS Google Scholar
  18. Oscarsson, O. in The Inferior Olivary Nucleus: Anatomy and Physiology (eds Courville, J., DeMontigny, C. & Lamarre, Y) 279– 289 (Raven, New York, 1980).
  19. Gellman, R., Gibson, A. R. & Houk, J. C. Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J. Neurophysiol. 54, 40–60 (1985).
    Article CAS Google Scholar
  20. Andersson, G. & Armstrong, D. M. Climbing fibre input to b zone Purkinje cells during locomotor perturbation in the cat. Neurosci. Lett. Supp. 22, S27 (1985).
  21. Andersson, G. & Armstrong, D. M. Complex spikes in Purkinje cells in the lateral vermis of the cat cerebellum during locomotion. J. Physiol. (Lond.) 385, 107–134 (1987).
    Article CAS Google Scholar
  22. Simpson, J. L., Wylie, D. R. & De Zeeuw, C. I. On climbing fiber signals and their consequence(s) Brain Behav. Sci. 19, 368– 383 (1995).
    Google Scholar
  23. Morrissette, J. & Bower, J. M. Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp. Brain Res. 109, 240–250 (1996).
    Article Google Scholar
  24. Leiner, H. C., Leiner, A. L. & Dow, R. S. The underestimated cerebellum. Hum. Brain Mapp. 2, 244–254 ( 1995).
    Article Google Scholar
  25. Gao, J-H et al. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272, 545–546 (1996).
    Article CAS Google Scholar
  26. Bower, J. M. Is the cerebellum sensory for motor's sake, or motor for sensory's sake: the view from the whiskers of a rat? Prog. Brain Res. 114 , 463–496 (1997).
    Article CAS Google Scholar
  27. Bower, J. M. Control of sensory data acquisition. Int. Rev. Neurobiol. 41, 489–513 (1997).
    Article CAS Google Scholar
  28. Deiber, M.-P. et al. Cortical areas and the selection of movement: a study with positron emission tomography. Exp. Brain Res. 84, 393–402 (1991).
    Article CAS Google Scholar
  29. Frith, C. D., Friston, K. J., Liddle, P. F. & Frackowiak, R. S. J. Willed action and the prefrontal cortex in man: a study with PET. Proc. R. Soc. Lond. B Biol. Sci. 244, 241– 246 (1991).
    Article CAS Google Scholar
  30. Paulesu, E., Frackowiak, R. S. J. & Bottini, G. in Human Brain Function (eds Frackowiak, R. S. J., Friston, K. J., Frith, C. D., Dolan, R. J. & Mazziotta, J. C.) 183–242 (Academic, San Diego,California 1997).
  31. Krubitzer, L., Clarrey, J., Tweedale, R., Elston, G. & Calford, M. A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J. Neurosci. 15, 3821–3839 (1995).
    Article CAS Google Scholar
  32. Jansma, J. M., Ramsey, N. F. & Kahn, R. S. Tactile stimulation during finger opposition does not contribute to 3D fMRI brain activity pattern. Neuroreport 9, 501–505 (1998).
    CAS PubMed Google Scholar
  33. Vogt, B. A., Finch, D. M. & Olson, C. R. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex 2, 435–443 ( 1992).
    CAS PubMed Google Scholar
  34. Vogt, B. A. & Gabriel, M. eds Neurobiology of Cingulate Cortex and Limbic Thalamus (Birkauser, Boston, 1993).
    Book Google Scholar
  35. Coghill, R. C. et al. Distributed processing of pain and vibration by the human brain. J. Neurosci. 14, 4095– 4108 (1994).
    Article CAS Google Scholar
  36. Porrino, L. J. Functional consequences of acute cocaine treatment depend on route of administration. Psychopharmacol. Berl. 112, 343– 351 (1993).
    Article CAS Google Scholar
  37. Friston K. J. et al. Spatial registration and normalization of images. Hum. Brain Mapp. 3, 165–189 (1995).
    Article Google Scholar
  38. Talairach, J & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).
    Google Scholar
  39. Friston, K. J. et al. The relationship between global and local changes in PET scans. J. Cereb. Blood Flow Metab. 10, 458– 466 (1990).
    Article CAS Google Scholar
  40. Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189 –210 (1995).
    Article Google Scholar
  41. Friston, K. J. in Human Brain Function (eds Frackowiak, R. S. J., Friston, K. J., Frith, C. D., Dolan, R. J. & Mazziotta, J. C.) 107– 126 (Academic, San Diego, California, 1997).
    Google Scholar

Download references