Functionally significant central-pair rotation in a primitive eukaryotic flagellum (original) (raw)

Nature volume 290, pages 708–710 (1981)Cite this article

Abstract

There is now considerable evidence that the basis for ciliary and flagellar movement is an active sliding between peripheral doublet microtubules which, when resisted by structures within the axoneme, leads to axonemal bend formation1–4. In contrast, relatively little is known about the control mechanisms which coordinate the interdoublet sliding and axonemal bending to produce the effective motion observed in various cilia and flagella5. One component of the axoneme which may be involved in this control is the central pair of microtubules6,7. To learn more about the action of the central pair, we have studied the tiny uniflagellate marine alga, Micromonas pusilla. The central tubules of the M. pusilla flagellum extend for several micrometres beyond the termination of the peripheral doublets8, thus permitting direct observation of the central pair during flagellar movement. Our findings, reported here, indicate that in living M. pusilla the central pair of microtubules undergoes continuous rotation in one direction. This rotation provides the motive force for the cell.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Satir, P. J. Cell Biol. 39, 77–94 (1968).
    Article CAS Google Scholar
  2. Summers, K. E. & Gibbons, I. R. Proc. natn. Acad. Sci. U.S.A. 68, 3092–3096 (1971).
    Article ADS CAS Google Scholar
  3. Gibbons, B. H. & Gibbons, I. R. Biochem biophys. Res. Commun. 73, 1–6 (1976).
    Article CAS Google Scholar
  4. Shingyogi, C., Murakami, A. & Takahashi, K. Nature 265, 269–270 (1977).
    Article ADS Google Scholar
  5. Brokaw, C. J. & Gibbons, I. R. in Swimming and Flying in Nature (eds Wu, T. Y.-T. et al.) 89–126 (Plenum, New York, 1975).
    Google Scholar
  6. Bessen, M. et al. J. Cell Biol. 86, 446–455 (1980).
    Article CAS Google Scholar
  7. Omoto, C. K. & Kung, C. Nature 279, 532–534 (1979).
    Article ADS CAS Google Scholar
  8. Manton, I. J. mar. Biol. Ass. U.K. 38, 319–333 (1959).
    Article Google Scholar
  9. Manton, I. & Parke, M. J. mar. Biol. Ass. U.K. 39, 275–298 (1960).
    Article Google Scholar
  10. Ringo, D. L. J. Cell Biol. 35, 543–571 (1967).
    Article Google Scholar
  11. Dute, R. & Kung, C. J. Cell Biol. 78, 451–464 (1978).
    Article CAS Google Scholar
  12. Omoto, C. K. & Kung, C. J. Cell Biol. 87, 33–46 (1980).
    Article CAS Google Scholar
  13. Tamm, S. L. & Tamm, S. J. Cell Sci. 20, 619–639 (1976).
    CAS Google Scholar
  14. Tamm, S. L. & Horridge, G. A. Proc. R. Soc. B 175, 219–233 (1970).
    ADS Google Scholar
  15. Jarosch, R. & Fuchs, B. Protoplasma 85, 285–290 (1975).
    Article CAS Google Scholar
  16. Witman, G. B. et al. J. Cell Biol. 76, 729–747 (1978).
    Article CAS Google Scholar
  17. Afzelius, B. A. J. Biophys. Biochem. Cytol. 9, 383–394 (1961).
    Article CAS Google Scholar
  18. Gibbons, I. R. J. Biophys. Biochem. Cytol. 11, 179–205 (1961).
    Article CAS Google Scholar
  19. Gibbons, I. R. in Molecules & Cell Movement (eds Inoué, S. & Stephens, R. E.) 207–232 (Raven, New York, 1975).
    Google Scholar
  20. Starr, R. C. J. Phycol. 14, Suppl., 47–100 (1978).
    Article Google Scholar
  21. Spurr, A. R. J. ultrastruct. Res. 26, 31–43 (1969).
    Article CAS Google Scholar
  22. Reynolds, E. S. J. Cell Biol. 17, 208–212 (1963).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Biology, Princeton University, Princeton, New Jersey, 08544, USA
    Charlotte K. Omoto & George B. Witman
  2. Biology Division, California Institute of Technology, Pasadena, California, 91125, USA
    Charlotte K. Omoto

Authors

  1. Charlotte K. Omoto
    You can also search for this author inPubMed Google Scholar
  2. George B. Witman
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Omoto, C., Witman, G. Functionally significant central-pair rotation in a primitive eukaryotic flagellum.Nature 290, 708–710 (1981). https://doi.org/10.1038/290708a0

Download citation