GPI-anchored proteins are organized in submicron domains at the cell surface (original) (raw)

References

  1. Jacobson, K., Sheets, E. D. & Simson, R. Revisiting the fluid mosaic model of membranes. Science 268, 1441–1442 (1995).
    Article ADS CAS Google Scholar
  2. Simons, K. & Ikonen, E. Functional rafts in membranes. Nature 387, 569–570 (1997).
    Article ADS CAS Google Scholar
  3. Harder, T. & Simons, K. Caveolae, DIGs, and the dynamics of sphingolipid–cholesterol microdomains. Curr. Opin. Cell Biol. 9, 534–542 (1997).
    Article CAS Google Scholar
  4. Weimbs, T., Hui-Low, S., Chapin, S. J. & Mostov, K. E. Apical targeting in polarized cells: there's more afloat than rafts. Trends Cell Biol. 7, 393–399 (1997).
    Article CAS Google Scholar
  5. Weber, G. Dependence of polarization of the fluorescence on the concentration. Trans. Faraday Soc. 50, 552–555 (1954).
    Article CAS Google Scholar
  6. Edidin, M. Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7, 528–532 (1997).
    Article CAS Google Scholar
  7. Brown, R. E. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J. Cell Sci. 111, 1–9 (1998).
    ADS CAS PubMed PubMed Central Google Scholar
  8. Kurzchalia, T. V., Hartmann, E. & Dupree, P. Guilt by insolubility—does a protein's detergent insolubility reflect a caveolar location? Trends Cell Biol. 5, 187–189 (1995).
    CAS PubMed Google Scholar
  9. Mayor, S. & Maxfield, F. R. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell 6, 929–944 (1995).
    Article CAS Google Scholar
  10. McConville, M. J. & Ferguson, M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J. 294, 305–324 (1993).
    Article CAS Google Scholar
  11. Mayor, S., Rothberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994).
    Article ADS CAS Google Scholar
  12. Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994).
    Article CAS Google Scholar
  13. Fujimoto, T. GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44, 929–941 (1996).
    Article CAS Google Scholar
  14. Brown, D. The tyrosine kinase connection: how GPI-anchored proteins activate T cells. Curr. Opin. Immunol. 5, 349–354 (1993).
    Article CAS Google Scholar
  15. Griffiths, G. Fine Structure Immunochemistry 1–459 (Springer, Heidelberg, (1993)).
    Google Scholar
  16. Simson, R.et al. Structural mosaicism on the submicron scale in the plasma membrane. Biophys. J. 74, 297–308 (1998).
    Article ADS CAS Google Scholar
  17. Sheets, E. D., Lee, G. M., Simson, R. & Jacobson, K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 36, 12449–12458 (1997).
    Article CAS Google Scholar
  18. Kenworthy, A. K. & Eddin, M. Searching for ‘lipid rafts’ in cell membranes using fluorescence resonance energy transfer (FRET) microscopy. Biophys. J. 74, A8 (1998).
    Google Scholar
  19. Matko, J. & Edidin, M. Energy transfer methods for detecting molecular clusters on cell surfaces. Meth. Enzymol. 278, 444–462 (1997).
    Article CAS Google Scholar
  20. Hannan, L. A., Lisanti, M. P., Rodriguez-Boulan, E. & Edidin, M. Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol. 120, 353–358 (1993).
    Article CAS Google Scholar
  21. Runnels, L. W. & Scarlata, S. F. Theory and application of fluorescence homotransfer to melittin oligomerizaiton. Biophys. J. 69, 1569–1583 (1995).
    Article ADS CAS Google Scholar
  22. Cerneus, D. P., Ueffing, E., Posthuma, G., Strous, G. J. & van der Ende, A. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J. Biol. Chem. 268, 3150–3155 (1993).
    CAS PubMed Google Scholar
  23. Hanada, K., Nishijima, M., Akamatsu, Y. & Pagano, R. E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270, 6254–6260 (1995).
    Article CAS Google Scholar
  24. Taraboulos, A.et al. Cholestrol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell Biology. 129, 121–132 (1995).
    Article CAS Google Scholar
  25. Chang, W.-J., Rothberg, K. G., Kamen, B. A. & Anderson, R. G. W. Lowering cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J. Cell Biol. 118, 63–69 (1992).
    Article CAS Google Scholar
  26. Mayor, S., Sabharanjak, S. & Maxfield, F. R. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J.(in the press).
  27. Stulnig, T. M.et al. Signal transduction via glycosyl phosphatidylinositol-anchored proteins in T cells is inhibited by lowering cellular cholesterol. J. Biol. Chem. 272, 19242–19247 (1997).
    Article CAS Google Scholar
  28. Yancey, P. G.et al. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J. Biol. Chem. 271, 16026–16034 (1996).
    Article CAS Google Scholar
  29. Ritter, T. E., Fajardo, O., Matsue, H., Anderson, R. G. & Lacey, S. W. Folate receptor targeted to clathrin-coated pits cannot regulate vitamin uptake. Proc. Natl Acad. Sci. USA 92, 3824–3828 (1995).
    Article ADS CAS Google Scholar
  30. Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).
    Article ADS CAS Google Scholar
  31. Matter, K., Hunziker, W. & Mellman, I. Basolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two tyrosine-dependent targeting determinants. Cell. 71, 741–753 (1992).
    Article CAS Google Scholar

Download references