Structure of a cephalosporin synthase (original) (raw)

References

  1. Roach, P. L.et al. The crystal structure of isopenicillin N synthase, first of a new structural family of enzymes. Nature 375, 700–704 (1995).
    Article ADS CAS Google Scholar
  2. Roach, P. L.et al. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387, 827–830 (1997).
    Article ADS CAS Google Scholar
  3. Hegg, E. L. & Que, L. The 2-His-1-carboxylate facial triad—an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur. J. Biochem. 250, 625–629 (1997).
    Article CAS Google Scholar
  4. Brotzu, G. Richerche su di un nuovo antibiotico. Lavori Istituto Igiene Cagliari 1–11 (1948).
  5. Newton, G. G. F. & Abraham, E. P. Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175, 548 (1955).
    Article ADS CAS Google Scholar
  6. Abraham, E. P. & Newton, G. G. F. The structure of cephalosporin C. Biochem. J. 79, 377–393 (1961).
    Article CAS Google Scholar
  7. Hodgkin, D. C. & Maslen, E. N. The X-ray analysis of the structure of cephalosporin C. Biochem. J. 79, 393–402 (1961).
    Article CAS Google Scholar
  8. Abraham, E. P. & Newton, G. G. F. Acomparison of the action of penicillinase on benzylpenicillin and cephalosporin N and the competitive inhibition of penicillinase by cephalosporin C. Biochem. J. 63, 628–634 (1956).
    Article CAS Google Scholar
  9. Baldwin, J. E. & Schofield, C. J. in The Chemistry of β-lactams(ed. Page, M. I.) 1–78 (Blackie, London, (1992)).
    Book Google Scholar
  10. Schofield, C. J.et al. Proteins of the penicillin biosynthesis pathway. Curr. Opin. Struct. Biol. 7, 857–864 (1997).
    Article CAS Google Scholar
  11. Yoshida, M.et al. Cell-free expansion of penicillin N to deacetoxycephalosporin C by Cephalosporium acremonium CW-19 and its mutants. Proc. Natl Acad. Sci. USA 75, 6253–6257 (1978).
    Article ADS CAS Google Scholar
  12. Dotzlaf, J. E. & Yeh, W. K. Purification and properties of deacetoxycephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus. J. Biol. Chem. 264, 10219–10227 (1989).
    CAS PubMed Google Scholar
  13. Kovacevic, S., Weigel, B. J., Tobin, M. B., Ingolia, T. D. & Miller, J. R. Cloning, characterization, and expression in Escherichia coli of the Streptomyces clavuligerus gene encoding deacetoxycephalosporin C synthetase. J. Bacteriol. 171, 754–760 (1989).
    Article CAS Google Scholar
  14. Prescott, A. G. Adilemma of dioxygenases (or where biochemistry and molecular biology fail to meet). J. Exp. Bot. 44, 849–861 (1993).
    Article CAS Google Scholar
  15. Lester, D. R., Ross, J. J., Davies, P. J. & Reid, J. B. Mendel's stem length gene (Le) encodes a gibberellin 3-β-hydroxylase. Plant Cell 9, 1435–1443 (1997).
    CAS PubMed PubMed Central Google Scholar
  16. Landman, O., Borovok, I., Aharonowitz, Y. & Cohen, G. The glutamine ligand in the ferrous iron active site of isopenicillin N synthase of Streptomyces jumonjinesis is not essential for catalysis. FEBS Lett. 405, 172–174 (1997).
    Article CAS Google Scholar
  17. Myllyharju, J. & Kivirikko, K. I. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J. 16, 1173–1180 (1997).
    Article CAS Google Scholar
  18. Zhang, Z.-H., Barlow, J. N., Baldwin, J. E. & Schofield, C. J. Metal-catalyzed oxidation and mutagenesis studies on the iron(II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry 36, 15999–16007 (1997).
    Article CAS Google Scholar
  19. Morgan, N.et al. Substrate specificity of recombinant Streptomyces clavuligerus deacetoxycephalosporin C synthase. Bioorg. Med. Chem. Letts. 4, 1595–1600 (1994).
    Article CAS Google Scholar
  20. Fisher, R. G. & Sweet, R. M. Treatment of diffraction data from protein crystals twinned by merohedry. Acta Crystallogr. A 36, 755–760 (1980).
    Article ADS Google Scholar
  21. Otwinowski, Z. in Data Collection and Processing(eds Sawyer, L., Isaacs, N. W. & Bailey, S.) DL/SCI/R34, 55–62 (Daresbury Laboratory, Warrington, UK, (1993)).
    Google Scholar
  22. The CCP4 suite: programs for protein crystallography Acta Crystallogr. D 50, 760–763 (1994).
  23. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATP-ase. Acta Crystallogr. D 52, 30–42 (1996).
    Article CAS Google Scholar
  24. Perrakis, A., Sixma, T. K., Wilson, K. S. & Lamzin, V. S. wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Crystallogr. D 53, 448–455 (1997).
    Article CAS Google Scholar
  25. Lamzin, V. S. & Wilson, K. S. Automated refinement of protein molecules. Acta Crystallogr. D 49, 129–147 (1993).
    Article CAS Google Scholar
  26. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).
    Article CAS Google Scholar
  27. Jones, T. A., Bergdoll, M. & Kjeldgaard, M. in Crystallographic and Modelling Methods in Molecular Design(eds Bugg, C. & Ealick, S.) 189–190 (Springer, New York, (1990)).
    Book Google Scholar
  28. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).
    Article ADS Google Scholar
  29. Sheldrick, G. M. & Schneider, T. R. SHELXL: High-resolution refinement. Methods Enzymol. 277, 319–343 (1997).
    Article CAS Google Scholar
  30. Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 132–134 (1997).
    Article CAS Google Scholar

Download references