Csk controls antigen receptor-mediated development and selection of T-lineage cells (original) (raw)

References

  1. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 432–452 (1997).
    Article Google Scholar
  2. Mombaerts, P. Lymphocyte development and function in T-cell receptor and RAG-1 mutant mice. Int. Rev. Immunol. 13, 43–63 (1995).
    Article CAS Google Scholar
  3. Alberola-Ila, J., Takaki, S., Kerner, J. D. & Perlmutter, R. M. Differential signaling by lymphocyte antigen receptors. Annu. Rev. Immunol. 15, 125–154 (1997).
    Article CAS Google Scholar
  4. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).
    Article CAS Google Scholar
  5. Nada, S., Okada, M., MacAuley, A., Cooper, J. A. & Nakagawa, H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351, 69–72 (1991).
    Article ADS CAS Google Scholar
  6. Jameson, S. C., Hogquist, K. A. & Bevan, M. J. Positive selection of thymocytes. Annu. Rev. Immunol. 13, 93–126 (1995).
    Article CAS Google Scholar
  7. Groves, T. et al. Fyn can partially substitute for Lck in T lymphocyte development. Immunity 5, 417–428 (1996).
    Article CAS Google Scholar
  8. van Oers, N. S., Lowin-Kropf, B., Finlay, D., Connolly, K. & Weiss, A. αβ T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases. Immunity 5, 429–436 (1996).
    Article CAS Google Scholar
  9. Mombaerts, P., Anderson, S. J., Perlmutter, R. M., Mak, T. W. & Tonegawa, S. An activated lck transgene promotes thymocyte development in RAG-1 mutant mice. Immunity 1, 261–267 (1994).
    Article CAS Google Scholar
  10. Nada, S. et al. Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell 73, 1125–1135 (1993).
    Article CAS Google Scholar
  11. Imamoto, A. & Soriano, P. Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73, 1117–1124 (1993).
    Article CAS Google Scholar
  12. Hanks, S. K. & Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596 (1995).
    Article CAS Google Scholar
  13. Kühn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).
    Article ADS Google Scholar
  14. Moore, T. A., von Freeden-Jeffry, U., Murray, R. & Zlotnik, A. Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7−/− mice. J. Immunol. 157, 2366–2373 (1996).
    CAS PubMed Google Scholar
  15. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β and block thymocyte development at different stages. Nature 360, 225–231 (1992).
    Article ADS CAS Google Scholar
  16. Wilson, A., Day, L. M., Scollay, R. & Shortman, K. Subpopulations of mature murine thymocytes: properties of CD4−CD8+ and CD4+CD8− thymocytes lacking the heat-stable antigen. Cell Immunol. 117, 312–326 (1988).
    Article CAS Google Scholar
  17. Swat, W., Dessing, M., von Boehmer, H. & Kisielow, P. CD69 expression during selection and maturation of CD4+8+ thymocytes. Eur. J. Immunol. 23, 739–746 (1993).
    Article CAS Google Scholar
  18. Sprent, J. & Tough, D. F. Lymphocyte life-span and memory. Science 265, 1395–1400 (1994).
    Article ADS CAS Google Scholar
  19. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).
    Article CAS Google Scholar
  20. Norment, A. M., Forbush, K. A., Nguyen, N., Malissen, M. & Perlmutter, R. M. Replacement of pre-T cell recpetor signaling functions by the CD4 coreceptor. J. Exp. Med. 185, 121–130 (1997).
    Article CAS Google Scholar
  21. Köntgen, F., Suss, G., Stewart, C., Steinmetz, M. & Bluethmann, H. Targeted disruption of the MHC class II Aα gene iC57BL/6 mice. Int. Immunol. 5, 957–964 (1993).
    Article Google Scholar
  22. Grusby, M. J., Johnson, R. S., Papaioannou, V. E. & Glimcher, L. H. Depletion of CD+ T cells in major histocompatibility complex class II-deficient mice. Science 253, 1417–1420 (1991).
    Article ADS CAS Google Scholar
  23. Gosgrove, D. et al. Mice lacking MHC class II molecules. Cell 66, 1051–1066 (1991).
    Article Google Scholar
  24. Torres, R. & Kühn, R. Laboratory Protocols for Conditional Gene Targeting (Oxford Univ. Press, (1997)).
  25. Ledbetter, J. A. & Herzenberg, L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol. Rev. 47, 63–90 (1979).
    Article CAS Google Scholar
  26. Anderson, S. J., Abraham, K. M., Nakayama, T., Singer, A. & Perlmutter, R. M. Inhibiton of T-cell receptor β-chain gene rearrangement by overexpression of the non-receptor protein tyrosine kianse p56lck. EMBO J. 11, 4877–4886 (1992).
    Article CAS Google Scholar
  27. Krotkova, A., von Boehmer, H. & Fehling, H. J. Allelic exclusion in pTα-deficient mice: no evidence for cell surface expression of two T cell receptor (TCR)-β chains but less efficient inhibition of endogeneous Vβ → (D)Jβ rearrangements in the presence of a functional TCR-β transgene. J. Exp. Med. 186, 767–775 (1997).
    Article CAS Google Scholar
  28. Saijo, K., Park, S. Y., Ishida, Y., Arase, H. & Saito, T. Crucial role of Jak3 in negative selection of self-reactive T cells. J. Exp. Med. 185, 351–356 (1997).
    Article CAS Google Scholar
  29. Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).
    Article CAS Google Scholar

Download references