Fertile females produced by inactivation of an X chromosome of ‘sex-reversed’ mice (original) (raw)

Nature volume 300, pages 446–448 (1982)Cite this article

Abstract

Sex-reversed (Sxr) is a dominant mutation that confers maleness on X/X Sxr mice1. Although its mode of inheritance is typically autosomal, all attempts to map Sxr to an autosomal chromosome have failed2. P. Burgoyne (personal communication) suggested that if Sxr were located at the end of the sex chromosomes, distal to a postulated obligatory cross-over in the X–Y pairing segment, it would show such an apparent autosomal pattern of inheritance. To test whether Sxr is located on one of the X chromosomes, and is perhaps therefore subject to X-chromosome inactivation, we have examined mice heterozygous for an X-autosome translocation, T(X; 16)H (ref. 3), such that the normal X chromosome postulated to carry Sxr is preferentially inactive. Independently, Singh and Jones4 have now shown by in situ hybridization that Sxr consists of a duplicated section of Y chromosome material that is indeed translocated to the distal terminus of one X chromatid during male meiosis5,6. Our results show that when the X chromosome carrying Sxr is preferentially inactivated, fertile T(X; 16)H/X Sxr females can be produced, owing to an associated inactivation of the male-determining Sxr sequences.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Cattanach, B. M., Pollard, C. E. & Hawkes, S. G. Cytogenetics 10, 318–337 (1971).
    Article CAS Google Scholar
  2. Lyon, M. F., Cattanach, B. M. & Charlton, H. M. in Mechanisms of Sex Differentiation in Animals and Man (eds Austin, C. R. & Edwards, R. G.) 329–386 (Academic, New York, 1981).
    Google Scholar
  3. Lyon, M. F., Searle, A. G., Ford, C. E. & Ohno, S. Cytogenetics 3, 306–323 (1964).
    Article CAS Google Scholar
  4. Singh, L. & Jones, K. W. Cell 28, 208–216 (1982).
    Article Google Scholar
  5. Burgoyne, P. Hum. Genet. 61, 85–90 (1982).
    Article CAS Google Scholar
  6. Eicher, E. M. in Prospects for Sexing Mammalian Sperm (eds Amann, R. P. & Seidel, G. E.) (Colorado Associated University Press, Colorado, in the press).
  7. Johnston, P. G. Genet. Res. 37, 317–322 (1981).
    Article CAS Google Scholar
  8. McMahon, A. & Monk, M. Genet. Res. (in the press).
  9. Cattanach, B. M., Evans, E. P., Burtenshaw, M. D. & Barlow, J. Nature 300, 445–446 (1982).
    Article ADS CAS Google Scholar
  10. Cattanach, B. M. Genet. Res. 23, 291–306 (1974).
    Article CAS Google Scholar
  11. Mystkowska, E. T. & Tarkowski, A. K. J. Embryol. exp. Morph. 20, 33–52 (1968).
    CAS PubMed Google Scholar
  12. Milet, R. G., Mukherjee, B. B. & Whitten, W. K. Can. J. Genet. Cytol. 14, 933–941 (1972).
    Article Google Scholar
  13. Ford, C. E., Evans, E. P., Burtenshaw, M. D., Clegg, H. M., Tuffrey, M. & Barnes, R. D. Proc. R. Soc. B 190, 187–197 (1975).
    ADS CAS Google Scholar
  14. McLaren, A. J. Embryol. exp. Morph. 33, 205–216 (1975).
    CAS PubMed Google Scholar
  15. Gearhart, J. D. & Oster-Granite, N. L. Biol. Reprod. Suppl. 24, 713–722 (1981).
    Article CAS Google Scholar
  16. Falconer, D. S. & Avery, P. J. J. Embryol. exp. Morph. 43, 195–219 (1978).
    CAS PubMed Google Scholar
  17. Nesbitt, M. N. Devl. Biol. 26, 252–263 (1971).
    Article Google Scholar
  18. McLaren, A. J. Reprod. Fert. 61, 461–467 (1981).
    Article CAS Google Scholar
  19. Mittwoch, U. & Buehr, M. Differentiation 1, 219–224 (1973).
    Article Google Scholar
  20. McLaren, A. Nature 283, 688–689 (1980).
    Article ADS CAS Google Scholar
  21. Polani, P. Hum. Genet. 60, 207–211 (1982).
    Article CAS Google Scholar
  22. McLaren, A. & Monk, M. J. Reprod. Fert. 63, 533–537 (1981).
    Article CAS Google Scholar
  23. Gartler, S. M., Rivest, M. & Cole, R. E. Cytogenet. & Cell Genet. 28, 203–207 (1980).
    Article CAS Google Scholar
  24. Kratzer, P. G. & Chapman, V. M. Proc. natn. Acad. Sci. U.S.A. 78, 3093–3097 (1981).
    Article ADS CAS Google Scholar
  25. Evans, E. P., Ford, C. E. & Lyon, M. F. Nature 267, 430–431 (1977).
    Article ADS CAS Google Scholar
  26. Gordon, J. J. exp. Zool. 367–374 (1976).
    Article CAS Google Scholar
  27. Schüpbach, T. Devl. Biol. 89, 117–127 (1982).
    Article Google Scholar
  28. Bücher, T., Bender, W., Fundele, R., Hofner, H. & Linke, I. FEBS Lett. 115, 319–324 (1981).
    Article Google Scholar

Download references

Author information

Authors and Affiliations

  1. MRC Mammalian Development Unit, Wolfson House (University College London), 4 Stephenson Way, London, NW1 2HE, UK
    Anne McLaren & Marilyn Monk

Authors

  1. Anne McLaren
    You can also search for this author inPubMed Google Scholar
  2. Marilyn Monk
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

McLaren, A., Monk, M. Fertile females produced by inactivation of an X chromosome of ‘sex-reversed’ mice.Nature 300, 446–448 (1982). https://doi.org/10.1038/300446a0

Download citation