Albedo asymmetry of Iapetus (original) (raw)

Nature volume 303, pages 782–785 (1983)Cite this article

Abstract

Voyager images of Saturn's moon, Iapetus1,2, confirm deductions made from Earth-based observations dating back to 1671 of a very dark leading hemisphere and a very bright trailing hemisphere3–5. Figure 1 displays contours of surface albedo from three Voyager images. The darkest area is at the apex of orbital motion, with a pronounced (∼10×) increase in albedo towards the antapex, constituting the greatest interhemispheric albedo contrast known in the Solar System. The poles are brighter still. Figure 1 also shows that the albedo distribution resembles the calculated areal variation of the trans-saturnian impact flux6 remarkably closely. Dark areas correspond to regions with the highest calculated flux. We propose here that the dark areas contain organic chromophores produced in situ by UV irradiation of CH4-rich ice, and that the albedo pattern results from ballistic redistribution of surface material in response to the impact flux gradient. Where the impact flux is high, net ablation will cause exposure of CH4-rich darkenable ice, creating a dark surface. Where the flux is low, net accumulation of non-darkenable icy regolith that has lost CH4 through repeated impact volatilization and evaporation, will create a bright surface.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Smith, B. A. et al. Science 212, 163–191 (1981).
    Article ADS CAS Google Scholar
  2. Smith, B. A. et al. Science 215, 504–537 (1982).
    Article ADS CAS Google Scholar
  3. Cassini, J. D. Phil. Trans. R. Soc. 8, 51–78 (1671).
    Google Scholar
  4. Widorn, Th. Der Lichtwechsel des Saturn Satelliten Japetus im Jahre 1949, Osterr. akad. Wissenschaften Abt. IIa 159, 186–199 (1950).
    Google Scholar
  5. Morrison, D., Jones, T. J., Cruikshank, D. P. & Murphy, R. E. Icarus 24, 157–171 (1975).
    Article ADS Google Scholar
  6. Cook, A. F. & Franklin, F. A. Icarus 13, 282–291 (1970).
    Article ADS Google Scholar
  7. Cruikshank, D. P. et al. Icarus 53, 90–104 (1983).
    Article ADS CAS Google Scholar
  8. Soter, S. Pap. at IAU planet. Satellite Conf., Cornell University, Ithaca (1974).
  9. Pollack, J. B., Grossman, A. S., Moore, R. & Graboske, H. C. Icarus 29, 35–48 (1976).
    Article ADS CAS Google Scholar
  10. Lebofsky, L. A. Icarus 25, 205–217 (1975).
    Article ADS CAS Google Scholar
  11. Gault, D. E., Horz, F., Brownlee, D. E. & Hartung, J. B. Proc. 5th Lunar Sci. Conf, 2365–2386 (1974).
  12. Gault, D. E. & Heitowit, E. D. Proc. 6th Hypervelocity Impact Symp. 2, 419–456 (1963).
    Google Scholar
  13. Breslau, D. J. geophys. Res. 75, 3987–3999 (1970).
    Article ADS Google Scholar
  14. O'Keefe, J. D. & Ahrens, T. J. Proc. 7th Lunar planet. Sci. Conf., 3007–3026 (1976).
  15. Housen, K. R., Wilkening, L. L., Chapman, C. R. & Greenberg, R. Icarus 39, 317–351 (1979).
    Article ADS Google Scholar
  16. Squyres, S. W. & Sagan, C. Proc. 14th Lunar planet. Sci. Conf., 739–740 (1983).
  17. Khare, B. N. & Sagan, C. in Molecules in the Galactic Environment (eds Gordon, M. & Snyder, L.) 399–408 (Wiley, New York, 1973).
    Google Scholar
  18. Hagen, W., Allamondola, L. J. & Greenberg, J. M. Astrophys. Space Sci. 65, 215–240 (1979).
    Article ADS CAS Google Scholar
  19. Greenberg, J. M. in Comets (ed. Wilkening, L.) 131–163 (University of Arizona Press, 1982).
    Google Scholar
  20. Khare, B. N., Sagan, C., Zumberge, J. E., Sklarew, D. S. & Nagy, B. Icarus 48, 290–297 (1981).
    Article ADS CAS Google Scholar
  21. Bar–Nun, A., Bar-Nun, N., Bauer, S. H. & Sagan, C. Science 168, 470–473 (1970).
    Article ADS Google Scholar
  22. Duxbury, T. C. Pap. at. Int. Colloq. on the Saturn System, Tucson (1982).
    Google Scholar
  23. Andersson, L. E. thesis Indiana Univ. (1974).
  24. Brown, R. H., Cruikshank, D. P. & Morrison, D. Nature 300, 423–425 (1982).
    Article ADS Google Scholar

Download references

Author information

Authors and Affiliations

  1. NASA Ames Research Center, Moffett Field, California, 94035, USA
    Steven W. Squyres
  2. Laboratory for Planetary Studies, Cornell University, Ithaca, New York, 14853, USA
    Carl Sagan

Authors

  1. Steven W. Squyres
    You can also search for this author inPubMed Google Scholar
  2. Carl Sagan
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Squyres, S., Sagan, C. Albedo asymmetry of Iapetus.Nature 303, 782–785 (1983). https://doi.org/10.1038/303782a0

Download citation

This article is cited by