L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum (original) (raw)

Nature volume 305, pages 427–430 (1983)Cite this article

Abstract

A major event of nervous system development1 is the migration of granule cell neurones, during the early postnatal development of the cerebellar cortex, from their germinating zone in the external granular layer to then final location in the internal granular layer. During migration, many granule cells are seen in direct cell-surface contact with processes of Bergmann glia, a subclass of astrocytes2. In the neurological mutant mouse weaver, however, migration of granule cells is impaired, probably due to a deficit in cell–cell interactions3–5. To gain insight into the cellular and molecular mechanisms involved in granule cell migration, we have used a modification of an in vitro assay system, previously described by Moonen _et al._6, which displays migratory behaviour in small tissue explants during several days of suspension culture. The aim of this study was to investigate the process of granule cell migration by using antibodies directed against cell-surface components of developing neural cells. We report here that migration of 3H-thymidine-labelled granule cell neurones can be modified by Fab fragments of both mono- and polyclonal L1 antibodies, but not by Fab fragments of polyclonal antibodies prepared against mouse liver membranes, which also react with cerebellar cell surfaces.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Cowan, W. M. Life Sci. Res. Rep. 24, 7–24 (1982).
    Google Scholar
  2. Rakic, P. Life Sci. Res. Rep. 20, 25–38 (1982).
    Google Scholar
  3. Rakic, P. & Sidman, R. L. J. comp. Neurol. 152, 103–132 (1973).
    Article CAS Google Scholar
  4. Rakic, P. & Sidman, R. L. J. comp. Neurol. 152, 133–162 (1973).
    Article CAS Google Scholar
  5. Sotelo, C. & Changeux, J.-P. Brain Res. 67, 519–526 (1974).
    Article CAS Google Scholar
  6. Moonen, G., Grau-Wagemans, M. P. & Selak, I. Nature 298, 753–755 (1982).
    Article ADS CAS Google Scholar
  7. Rathjen, F. G. & Schachner, M. EMBO J. (in the press).
  8. Miale, J. L. & Sidman, R. L. Expl Neurol. 4, 277–296 (1961).
    Article CAS Google Scholar
  9. Goridis, C., Joher, J. A., Hirsch, M. & Schachner, M. J. Neurochem. 31, 531–539 (1978).
    Article CAS Google Scholar
  10. Rohrer, H. & Schachner, M. Neurochemistry 35, 792–803 (1980).
    Article CAS Google Scholar
  11. Jorgensen, O. S., Delouvee, A., Thiery, J.-P. & Edelmann, G. M. FEBS Lett. 111, 39–42 (1980).
    Article CAS Google Scholar
  12. Hirn, M., Pierres, M., Deagostini-Bazin, H., Hirsch, M. & Goridis, C. Brain Res. 214, 433–439 (1981).
    Article CAS Google Scholar
  13. Brackenbury, R., Thiery, M.-P., Rutishauser, U. & Edelman, G. M. J. biol. Chem. 252, 6835–6840 (1977).
    CAS Google Scholar
  14. Hoffman, S. et al. J. biol. Chem. 257, 7720–7729 (1982).
    CAS Google Scholar
  15. Lemmon, V., Staros, E. B., Perry, H. E. & Gottlieb, D. I. Devl Brain Res. 3, 349–360 (1982).
    Article CAS Google Scholar
  16. Schnitzer, J. & Schachner, M. J. Immun. 1, 457–470 (1981).
    CAS Google Scholar
  17. Altman, J. J. comp. Neurol. 163, 427–448 (1975).
    Article CAS Google Scholar
  18. Caviness, V. S. & Rakic, P. A. Rev. Neurosci. 1, 297–326 (1978).
    Article Google Scholar
  19. Fischer, G. Neurosci. Lett. 28, 325–329 (1982).
    Article CAS Google Scholar
  20. Goridis, C., Martin, J. & Schachner, M. Brain Res. Bull. 3, 45–52 (1978).
    Article CAS Google Scholar
  21. Willinger, M. & Schachner, M. Devl Biol. 74, 101–117 (1980).
    Article CAS Google Scholar
  22. Fujita, S. J. Cell Biol. 32, 277–287 (1967).
    Article CAS Google Scholar

Download references

Author information

Author notes

  1. F. G. Rathjen
    Present address: Max-Planck-Institut für Virusforschung, Spemannstrasse 35, 7400, Tübingen, FRG

Authors and Affiliations

  1. Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 504, 6900, Heidelberg, FRG
    J. Lindner, F. G. Rathjen & M. Schachner

Authors

  1. J. Lindner
  2. F. G. Rathjen
  3. M. Schachner

Rights and permissions

About this article

Cite this article

Lindner, J., Rathjen, F. & Schachner, M. L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum.Nature 305, 427–430 (1983). https://doi.org/10.1038/305427a0

Download citation

This article is cited by