Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements (original) (raw)

Nature volume 310, pages 514–516 (1984)Cite this article

Abstract

The Drosophila genetic element copia is one of the best studied eukaryotic transposable sequences. Copia shares structural features with a wide variety of mobile elements in _Drosophila_1,2, _Lepidoptera_3, yeast4,5 and vertebrates1,2, the last class being the retrovirus proviruses. Furthermore, retrovirus-like particles containing copia RNA have been isolated from Drosophila cells6 and extrachromosomal circular copias with structures closely resembling circular retrovirus proviruses have been isolated and cloned7,8. Therefore, _copia_-like elements and retroviruses may be members of a class of mobile genetic elements existing throughout the eukaryotic kingdom. Consequently, there has been speculation that retroviruses evolved from transposable elements7–9 and, conversely, that _copia_-like elements transpose as retroviruses or retrovirus-like particles6–8. To date, however, there has been no demonstration that copia RNA is reverse transcribed into copia DNA. The present report describes the isolation of linear extrachromosomal copias whose structure closely resembles the analogous retrovirus provirus linears and whose synthesis is unaffected by inhibitors of the cellular DNA polymerase responsible for chromosomal DNA replication.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Rubin, G. M. et al. Cold Spring Harb. Symp. quant. Biol. 45, 619–628 (1981).
    Article CAS Google Scholar
  2. Varmus, H. E. in Mobile Genetic Elements (ed. Shapiro, J. A.) (Academic, New York, 1982).
    Google Scholar
  3. Miller, D. W. & Miller, L. K. Nature 299, 562–564 (1982).
    Article ADS CAS Google Scholar
  4. Farabaugh, P. J. & Fink, G. R. Nature 286, 352–356 (1980).
    Article ADS CAS Google Scholar
  5. Gafner, J. & Philippsen, P. Nature 286, 414–418 (1980).
    Article ADS CAS Google Scholar
  6. Shiba, T. & Saigo, K. Nature 302, 119–124 (1983).
    Article ADS CAS Google Scholar
  7. Flavell, A. J. & Ish-Horowicz, D. Nature 292, 591–595 (1981).
    Article ADS CAS Google Scholar
  8. Flavell, A. J. & Ish-Horowicz, D. Cell 34, 415–4l9 (1983).
    Article CAS Google Scholar
  9. Temin, H. M. Cell 21, 599–600 (1980).
    Article CAS Google Scholar
  10. Varmus, H. E. & Shank, P. R. J. Virol. 18, 567–573 (1976).
    CAS PubMed PubMed Central Google Scholar
  11. Hirt, B. J. molec. Biol. 26, 365–369 (1967).
    Article CAS Google Scholar
  12. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).
    Article CAS Google Scholar
  13. Jacob, S. T. (ed.) Enzymes of Nucleic Acid Synthesis and Modification Vol. 1, 54–55 (CRC Press, Boca Raton, Florida, 1983).
  14. Hagino-Yamagishi, K., Kano, K. & Mano, Y. Biochem. biophys. Res. Commun. 102, 1372–1378 (1981).
    Article CAS Google Scholar
  15. Hsu, T. W. & Taylor, J. M. J. Virol. 44, 493–498 (1982).
    CAS PubMed PubMed Central Google Scholar
  16. Hubscher, U., Kuenzle, C. C. & Spadari, S. Proc. natn. Acad. Sci. U.S.A. 76, 2316–2320 (1979).
    Article ADS CAS Google Scholar
  17. Tooze, J. (ed.) DNA Tumour Viruses. Molecular Biology of Tumour Viruses 2nd edn (Cold Spring Harbor Laboratory, New York, 1981).
  18. Yang, S. S. & Wivel, N. A. J. Virol. 13, 712–720 (1974).
    CAS PubMed PubMed Central Google Scholar
  19. Kuff, E. L. et al. Proc. natn. Acad. Sci. U.S.A. 80, 1992–1996 (1983).
    Article ADS CAS Google Scholar
  20. Heine, C. W., Kelly, D. C. & Avery, R. J. J. gen. Virol. 49, 385–395 (1980).
    Article CAS Google Scholar
  21. Fink, G., Farabaugh, P., Roeder, G. & Chaleff, D. Cold Spring Harb. Symp. quant. Biol. 45, 575–580 (1980).
    Article Google Scholar
  22. Copeland, N. G., Hutchison, K. W. & Jenkins, N. A. Cell 33, 379–387 (1983).
    Article CAS Google Scholar
  23. Sinclair, J. H., Sang, J. H., Burke, J. F. & Ish-Horowicz, D. Nature 306, 198–200 (1983).
    Article ADS CAS Google Scholar
  24. Eschalier, G. & Ohanessian, A. In Vitro 6, 162–172 (1970).
    Article Google Scholar

Download references

Author information

Author notes

  1. Andrew J. Flavell
    Present address: Department of Biochemistry, The University, Dundee, DD1 4HN, UK

Authors and Affiliations

  1. The Imperial Cancer Research Fund, Mill Hill Laboratories, Burtonhole Lane, London, NW7 1AD, UK
    Andrew J. Flavell

Authors

  1. Andrew J. Flavell
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Flavell, A. Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements.Nature 310, 514–516 (1984). https://doi.org/10.1038/310514a0

Download citation