Cellular automata as models of complexity (original) (raw)

Nature volume 311, pages 419–424 (1984)Cite this article

Abstract

Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The origins of such complexity can be investigated through mathematical models termed ‘cellular automata’. Cellular automata consist of many identical components, each simple., but together capable of complex behaviour. They are analysed both as discrete dynamical systems, and as information-processing systems. Here some of their universal features are discussed, and some general principles are suggested.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Wolfram, S. Rev. Mod. Phys. 55, 601–644 (1983).
    Article ADS Google Scholar
  2. Wolfram, S. Physica 10 D, 1–35 (1984).
    MathSciNet Google Scholar
  3. Wolfram, S. Commun. Math. Phys. (in the press).
  4. Wolfram, S. Cellular Automata (Los Alamos Science, Autumn, 1983).
    MATH Google Scholar
  5. Mandelbrot, B. The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
    MATH Google Scholar
  6. Packard, N., Preprint Cellular Automaton Models for Dendritic Growth (Institute for Advanced Study, 1984).
    Google Scholar
  7. Madore, B. & Freedman, W. Science 222, 615–616 (1983).
    Article ADS CAS Google Scholar
  8. Greenberg, J. M., Hassard, B. D. & Hastings, S. P. Bull. Amer. Math. Soc. 84, 1296–1327 (1978).
    Article MathSciNet Google Scholar
  9. Vichniac, G. Physica 10 D, 96–116 (1984).
    MathSciNet Google Scholar
  10. Domany, E. & Kinzel, W. Phys. Rev. Lett. 53, 311–314 (1984).
    Article ADS MathSciNet Google Scholar
  11. Waddington, C. H. & Cowe, R. J. J. theor. Biol. 25, 219–225 (1969).
    Article CAS Google Scholar
  12. Lindsay, D. T. Veliger 24, 297–299 (1977).
    Google Scholar
  13. Young, D. A. A Local Activator–Inhibitor Model of Vertebrate Skin Patterns (Lawrence Livermore National Laboratory Rep., 1983).
    Google Scholar
  14. Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin, 1983).
    Book Google Scholar
  15. Hopcroft, J. E. & Ullman, J. D. Introduction to Automata Theory, Languages, and Computation (Addison-Wesley, New York, 1979).
    MATH Google Scholar
  16. Packard, N. Preprint, Complexity of Growing Patterns in Cellular Automata (Institute for Advanced Study, 1983).
    Google Scholar
  17. Martin, O, Odlyzko, A. & Wolfram, S. Commun. Math. Phys. 93, 219–258 (1984).
    Article ADS Google Scholar
  18. Grassberger, P. Physica 10 D, 52–58 (1984).
    MathSciNet Google Scholar
  19. Lind, D. Physica 10 D, 36–44 (1984).
    MathSciNet Google Scholar
  20. Margolus, N. Physica 10 D, 81–95 (1984).
    MathSciNet Google Scholar
  21. Smith, A. R. Journal of the Association for Computing Machinery 18, 339–353 (1971).
    Article MathSciNet Google Scholar
  22. Berlekamp, E. R., Conway, J. H. & Guy, R. K. Winning Ways for your Mathematical Plays Vol. 2, Ch. 25 (Academic, New York, 1982).
    MATH Google Scholar
  23. Gardner, M. Wheels, Life and other Mathematical Amusements (Freeman, San Francisco, 1983).
    MATH Google Scholar
  24. Wolfram, S. SMP Reference Manual (Computer Mathematics Group, Inference Corporation, Los Angeles, 1983).
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. The Institute for Advanced Study, Princeton, New Jersey, 08510, USA
    Stephen Wolfram

Rights and permissions

About this article

Cite this article

Wolfram, S. Cellular automata as models of complexity.Nature 311, 419–424 (1984). https://doi.org/10.1038/311419a0

Download citation

This article is cited by