Analysis of persistent virus infections by in situ hybridization to whole-mouse sections (original) (raw)

Nature volume 312, pages 555–558 (1984)Cite this article

Abstract

Nucleic acid hybridization techniques have contributed significantly to the understanding of gene organization, regulation and expression1–4. In the context of persistent or latent viral infections, hybridization with specific labelled probes represents the most sensitive assay presently available for detection of viral genomes5–8. During the course of persistence, viral genomes may exist in multiple and yet quite segregated areas in an infected host, but examination of all tissues remains difficult and time-consuming. At present, the application of hybridization assays to in vivo infections requires either chemical extraction of nucleic acid coupled with dot-blot9 and gel transfer1 techniques or in situ hybridization5,10 to cryostat tissue sections. In both cases, selected tissues must be removed by dissection before analysis. We describe here a procedure which allows efficient and reproducible screening of all tissue in an infected host. Our technique allows detection of viral genetic material in whole-body sections of infected mice, and provides the first evidence in vivo for accumulation of viral genetic material with a parallel decrease in infectious virus during persistent virus infection. This technique should be widely applicable to studies of developmental regulation of gene expression, for monitoring locations of gene expression in transgenic mice and for analysis of molecular mechanisms in pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).
    Article CAS Google Scholar
  2. Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. Cell 12, 1–8 (1977).
    Article CAS Google Scholar
  3. Berk, A. J. & Sharp, P. A. Proc. natn. Acad. Sci. U.S.A. 75, 1274–1278 (1978).
    Article ADS CAS Google Scholar
  4. Sim, G. K. et al. Cell 18, 1303–1316 (1979).
    Article CAS Google Scholar
  5. Haase, A. T., Ventura, P., Gibbs, C. J. & Tourtellotte, W. W. Science 212, 672–675 (1981).
    Article ADS CAS Google Scholar
  6. Rock, D. L. & Fraser, N. W. Nature 302, 523–525 (1983).
    Article ADS CAS Google Scholar
  7. Benditt, E. P., Barrett, T. & McDougall, J. K. Proc. natn. Acad. Sci. U.S.A. 80, 6386–6389 (1983).
    Article ADS CAS Google Scholar
  8. Blum, H. E. et al. Proc. natn. Acad. Sci. U.S.A. 80, 6685–6688 (1983).
    Article ADS CAS Google Scholar
  9. Kafatos, F. C., Jones, C. W. & Efstratiadis, A. Nucleic Acids Res. 7, 1541–1552 (1979).
    Article CAS Google Scholar
  10. Brigati, D. J. et al. Virology 126, 32–50 (1983).
    Article CAS Google Scholar
  11. Traub, E. J. exp. Med. 63, 847–862 (1936).
    Article CAS Google Scholar
  12. Hotchin, J. Cold Spring Harb. Symp. quant. Biol. 27, 479–499 (1962).
    Article CAS Google Scholar
  13. Lehmann-Grube, F. Virol. Monogr. 10, 1–173 (1971).
    Google Scholar
  14. Buchmeier, M. J., Welsh, R. M., Dutko, F. J. & Oldstone, M. B. A. Adv. Immun. 30, 275–331 (1980).
    Article CAS Google Scholar
  15. Pedersen, I. R. Nature, new Biol. 234, 112–114 (1971).
    Article CAS Google Scholar
  16. Rawls, W. E. & Leung, W-C. Compreh. Virol. 14, 157–192 (1979).
    Article CAS Google Scholar
  17. Southern, P. J. & Oldstone, M. B. A. in Segmented Negative Strand Viruses (eds Bishop, D. H. L. & Compans, R. W.) 59–64 (Academic, New York, 1984).
    Book Google Scholar
  18. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).
    Article CAS Google Scholar
  19. Oldstone, M. B. A., Southern, P., Rodriguez, M. & Lampert, P. Science 224, 1440–1443 (1984).
    Article ADS CAS Google Scholar
  20. Huang, A. S. & Baltimore, D. Nature 226, 325–327 (1970).
    Article ADS CAS Google Scholar
  21. Holland, J. et al. Science 215, 1577–1585 (1982).
    Article ADS CAS Google Scholar
  22. Hu, N-t. & Messing, J. Gene 17, 271–277 (1982).
    Article CAS Google Scholar
  23. Green, M. R., Maniatis, T. & Melton, D. A. Cell 32, 681–694 (1983).
    Article CAS Google Scholar
  24. Dubensky, T. W., Murphy, F. A. & Villarreal, L. P. J. Virol. 50, 779–783 (1984).
    CAS PubMed PubMed Central Google Scholar
  25. Nelson, J. A., Fleckenstein, B., Galloway, D. A. & McDougall, J. K. J. Virol. 43, 83–91 (1982).
    CAS PubMed PubMed Central Google Scholar
  26. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).
    Article CAS Google Scholar
  27. Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Immunology, Scripps Clinic and Research Foundation, 10666 N. Torrey Pines Road, La Jolla, California, 92037, USA
    Peter J. Southern, Paul Blount & Michael B. A. Oldstone

Authors

  1. Peter J. Southern
    You can also search for this author inPubMed Google Scholar
  2. Paul Blount
    You can also search for this author inPubMed Google Scholar
  3. Michael B. A. Oldstone
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Southern, P., Blount, P. & Oldstone, M. Analysis of persistent virus infections by in situ hybridization to whole-mouse sections.Nature 312, 555–558 (1984). https://doi.org/10.1038/312555a0

Download citation