Calcium oscillations increase the efficiency and specificity of gene expression (original) (raw)
References
Berridge, M. J. & Galione, A. Cytosolic calcium oscillators. FASEB J.2, 3074–3082 (1988). ArticleCAS Google Scholar
Tsien, R. W. & Tsien, R. Y. Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol.6, 715–760 (1990). ArticleCAS Google Scholar
Fewtrell, C. Ca2+ oscillations in non-excitable cells. Annu. Rev. Physiol.55, 427–454 (1993). ArticleCAS Google Scholar
Thomas, A. P., Bird, G. S. J., Hajnóczky, G., Robb-Gaspers, L. D. & Putney, J. W. J Spatial and temporal aspects of cellular calcium signaling. FASEB J.10, 1505–1517 (1996). ArticleCAS Google Scholar
Negulescu, P. A., Shastri, N. & Cahalan, M. D. Intracellular calcium dependence of gene expression in single T lymphocytes. Proc. Natl Acad. Sci. USA91, 2873–2877 (1994). ArticleADSCAS Google Scholar
Dolmetsch, R. E. & Lewis, R. S. in Imaging Living Cells: A Laboratory Manual (eds Konnerth, A., Lanni, F. & Yuste, R.) (CSHL Press, Cold Spring Harbor, in the press).
Lewis, R. S. & Cahalan, M. D. Potassium and calcium channels in lymphocytes. Annu. Rev. Immunol.13, 623–653 (1995). ArticleCAS Google Scholar
Zweifach, A. & Lewis, R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl Acad. Sci. USA90, 6295–6299 (1993). ArticleADSCAS Google Scholar
Lewis, R. S. & Cahalan, M. D. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Reg.1, 99–112 (1989). ArticleCAS Google Scholar
Dolmetsch, R. & Lewis, R. S. Signaling between intracellul Ca2+ stores and depletion-activated Ca2+ channels generates [Ca2+]ioscillations in T lymphocytes. J. Gen. Physiol.103, 365–388 (1994). ArticleCAS Google Scholar
Crabtree, G. R. & Clipstone, N. A. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biochem.63, 1045–1083 (1994). ArticleCAS Google Scholar
Rao, A. NF-ATp: a transcription factor required for the coordinate induction of several cytokine genes. Immunol. Today15, 274–281 (1994). ArticleCAS Google Scholar
Fiering, S. et al. Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor. Genes Dev.4, 1823–1834 (1990). ArticleCAS Google Scholar
Donnadieu, E. et al. Imaging early steps of human T cell activation by antigen-presenting cells. J.Immunol.148, 2643–2653 (1992). CASPubMed Google Scholar
Frantz, B. et al. Calcineurin acts in synergy with PMA to inactivate IκB/MAD3, an inhibitor of NF-κB. EMBO J.13, 861–870 (1994). ArticleCAS Google Scholar
Mattila, P. S. et al. The actions of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes. EMBO J.9, 4425–4433 (1990). ArticleCAS Google Scholar
Baeuerle, P. A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol.12, 141–179 (1994). ArticleCAS Google Scholar
Clipstone, N. A. & Crabtree, G. R. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature357, 695–697 (1992). ArticleADSCAS Google Scholar
Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell66, 807–815 (1991). ArticleCAS Google Scholar
Fanger, C. M., Hoth, M., Crabtree, G. R. & Lewis, R. S. Characterization of T cell mutants with defects in capacitative calcium entry: Genetic evidence for the physiological roles of CRAC channels. J. Cell Biol.131, 655–667 (1995). ArticleCAS Google Scholar
Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature386, 855–858 (1997). ArticleADSCAS Google Scholar
Li, W.-h., Llopis, J., Whitney, M., Zlokarnik, G. & Tsien, R. Y. Cell-permeant caged InsP3ester shows that Ca2+ spike frequency can optimize gene expression. Nature392, 936–941 (1998). ArticleADSCAS Google Scholar
Shibasaki, F., Price, E., Milan, D. & McKeon, F. Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature382, 370–373 (1996). ArticleADSCAS Google Scholar
Durand, D. B., Bush, M. R., Morgan, J. G., Weiss, A. & Crabtree, G. R. A275 base pair fragment at the 5′ end of the interleukin 2 gene enhances expression from a heterologous promoter in response to signals from the T cell antigen receptor. J. Exp. Med.165, 395–407 (1987). ArticleCAS Google Scholar
Okamoto, S. et al. The interleukin-8 AP-1 and κB-like sites are genetic end targets of FK506-sensitive pathway accompanied by calcium mobilization. J. Biol. Chem.269, 8582–8589 (1994). CASPubMed Google Scholar
Durand, D. B. et al. Characterization of antigen receptor response elements within the interleukin-2 enhancer. Mol. Cell. Biol.8, 1715–1724 (1988). ArticleCAS Google Scholar
Wechsler, A. S., Gordon, M. C., Dendorfer, U. & LeClair, K. P. Induction of IL-8 expression in T cells uses the CD28 costimulatory pathway. J. Immunol.153, 2515–2523 (1994). CASPubMed Google Scholar
Prussin, C. & Metcalfe, D. D. Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J. Immunol. Meth.188, 117–128 (1995). ArticleCAS Google Scholar
Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature375, 784–787 (1995). ArticleADSCAS Google Scholar
Fields, R. D., Eshete, F., Stevens, B. & Itoh, K. Action potential-dependent regulation of gene expression: temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signaling. J. Neurosci.17, 7252–7266 (1997). ArticleCAS Google Scholar