Atmospheric CO2 concentration and millennial-scale climate change during the last glacial period (original) (raw)

References

  1. Raynaud, D. et al. The ice record of greenhouse gases. Science 259, 926–933 (1993).
    Article ADS CAS Google Scholar
  2. Oeschger, H. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 299–306 (Vol. 29, Geophys. Monogr Ser., Am Geophys. Union, Washington DC, (1984)).
    Book Google Scholar
  3. Stauffer, B., Hofer, H., Oeschger, H., Schwander, J. & Siegenthaler, U. Atmospheric CO2concentration during the last glaciation. Ann. Glaciol. 5, 160–164 (1984).
    Article ADS CAS Google Scholar
  4. Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, B. CO2record in the Byrd ice core 50,000–5,000 years BP. Nature 331, 609–611 (1988).
    Article ADS Google Scholar
  5. Thompson, L. G. in Proc. Isotopes and Impurities in Snow and Ice, Grenoble Aug./Sept. 1975, 351–363 (Publication 118, Int. Assoc. Hydrological Sciences, IAHS-AISH, (1975)).
    Google Scholar
  6. Delmas, R. A. Anatural artefact in Greenland ice-core CO2measurements. Tellus B 45, 391–396 (1993).
    Article ADS Google Scholar
  7. Anklin, M. et al. CO2record between 40 and 8 kyr BP from the GRIP ice core. J. Geophys. Res. 102, 26539–26545 (1997).
    Article ADS CAS Google Scholar
  8. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).
    Article ADS Google Scholar
  9. Bond, G. C. & Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last deglaciation. Science 267, 1005–1010 (1995).
    Article ADS CAS Google Scholar
  10. Maier-Reimer, E. & Mikolajewicz, U. Experiments with an OGCM on the Cause of the Younger Dryas (Tech. Rep. 39, Max-Planck-Inst. für Meteorol, Hamburg, (1989)).
    Google Scholar
  11. Stocker, T. F. & Wright, D. G. Rapid transitions of the ocean's deep circulation induced by changes in surface water fluxes. Nature 351, 729–732 (1991).
    Article ADS Google Scholar
  12. Wright, D. G. & Stocker, T. F. in Ice in the Climate System (ed. Peltier, W. R.) 395–416 (NATO ASI Ser. I, 12, Springer, Berlin, (1993)).
    Book Google Scholar
  13. Oeschger, H., Neftel, A., Staffelbach, T. & Stauffer, B. The dilemma of the rapid variations in CO2in Greenland ice cores. Ann. Glaciol. 10, 215–216 (1988).
    Article ADS Google Scholar
  14. Sowers, T. & Bender, M. Climate records covering the last deglaciation. Science 269, 210–214 (1995).
    Article ADS CAS Google Scholar
  15. Blunier, T. et al. Timing of the Antarctic Cold Reversal and the atmospheric CO2increase with respect to the Younger Dryas event. Geophys. Res. Lett. 24, 2683–2686 (1997).
    Article ADS CAS Google Scholar
  16. Chappellaz, J. et al. Changes in the atmospheric CH4gradient between Greenland and Antarctica during the Holocene. J. Geophys. Res. 102, 15987–15999 (1997).
    Article ADS CAS Google Scholar
  17. Chappellaz, J. et al. Synchronous changes in atmospheric CH4and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445 (1993).
    Article ADS CAS Google Scholar
  18. Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W. & Gundestrup, N. Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus B 47, 624–629 (1995).
    Article ADS Google Scholar
  19. Schwander, J. et al. Age scale of the air in the Summit ice: Implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19483–19494 (1997).
    Article ADS Google Scholar
  20. Bond, G. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993).
    Article ADS Google Scholar
  21. Fuhrer, A. _Ein System zur Messung des totalen Karbonatgehaltes polarer Eisproben_Thesis, Univ. Bern((1995)).
    Google Scholar
  22. Hammer, C. U., Clausen, H. B. & Langway, C. C. J Electrical conductivity method (ECM) stratigraphic dating of th Byrd Station ice core, Antarctica. Ann. Glaciol. 20, 115–120 (1994).
    Article ADS Google Scholar
  23. Anklin, M. J. _Kohlenstoffdioxid Bestimmungen in Luftproben aus einem neuen Tiefbohrkern von Summit (Grönland)_Thesis, Univ. Bern((1994)).
    Google Scholar
  24. Barnola, J.-M., Pimienta, P., Raynaud, D. & Korotkevich, Y. S. CO2-climate relationship as deduced from the Vostok ice core: A re-examination based on new measurements and on a re-evaluation of the air dating. Tellus 43, 83–90 (1991).
    Article Google Scholar
  25. Barnola, J.-M., Jeanjean, E. & Raynaud, D. Holocene atmospheric CO2evolution as deduced from an Antarctic ice core. Eos 77, 151 (1996).
    Google Scholar
  26. Leuenberger, M., Siegenthaler, U. & Langway, C. C. Carbon isotope composition of atmospheric CO2during the last ice age from an Antarctic ice core. Nature 357, 488–490 (1992).
    Article ADS CAS Google Scholar
  27. Machida, T. et al. Variations of the CO2, CH4and N2O concentrations and δ13C of CO2in the glacial period deduced from an Antarctic ice core, south Yamato. Proc. NIPR Symp. Polar Meteorol. Glaciol. 10, 55–65 (1996).
    Google Scholar
  28. Keir, R. S. On the Late Pleistocene ocean geochemistry and circulation. Paleoceanography 3, 413–445 (1988).
    Article ADS Google Scholar
  29. Marchal, O., Stocker, T. F. & Joos, F. Impact of oceanic reorganisations and the marine carbon cycle and atmospheric CO2. Paleoceanography (submitted).

Download references