Synthesis of fast myosin induced by fast ectopic innervation of rat soleus muscle is restricted to the ectopic endplate region (original) (raw)

Nature volume 322, pages 637–639 (1986)Cite this article

Abstract

Skeletal muscle fibres, long multinucleated cells, arise by fusion of mononucleated myoblasts to form a myotube that matures into the adult fibre. The two major types of mature fibre, fast and slow fibres, differ physiologically in their rate of isotonic shortening1. At the molecular level these type-specific physiological properties are ascribed to different isoforms of myosin, a major protein involved in shortening2,3. Differentiation of fast and slow fibres seems to be under the control of motoneurones4, and mature fibres are innervated by only one motoneurone. When rat soleus muscle (SOL, a slow muscle) is dually innervated with a fast nerve, it acquires some properties of a fast muscle, that is, low sensitivity to caffeine and high glycogen content5. We report here that in dually innervated soleus muscle the foreign fast nerve induces synthesis of fast isoforms of myosin, but only in the segment of the muscle fibre that is close to the foreign endplate. The localized influence of the nerve endplates suggest that factors controlling the phenotypic expression of the muscle fibre have a short range of activity.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Close, R. I. Physiol. Rev. 52, 129–197 (1972).
    Article CAS Google Scholar
  2. Barany, M. J. gen. Physiol. 50, 197–218 (1967).
    Article Google Scholar
  3. Dhoot, G. K. & Perry, S. V. Nature 278, 714–718 (1979).
    Article ADS CAS Google Scholar
  4. Buller, A. J., Eccles, J. C. & Eccles, R. M. J. Physiol., Lond. 150, 417–439 (1960).
    Article CAS Google Scholar
  5. Gutmann, E. & Hanzlikova, V. Physiol., Bohem. 16, 244–250 (1967).
    CAS Google Scholar
  6. Lomo, T. & Slater, C. R. J. Physiol., Lond. 275, 391–402 (1978).
    Article CAS Google Scholar
  7. Frank, E., Jansen, J. K. S., Lomo, T. & Westgaard, R. H. J. Physiol., Lond. 247, 725–743 (1975).
    Article CAS Google Scholar
  8. Salviati, G., Betto, R. & Danieli-Betto, D. Biochem. J. 207, 261–272 (1982).
    Article CAS Google Scholar
  9. Laemmli, U. K. Nature 227, 680–685 (1970).
    Article ADS CAS Google Scholar
  10. Salviati, G., Betto, R., Danieli-Betto, D. & Zeviani, M. Biochem. J. 224, 215–225 (1984).
    Article CAS Google Scholar
  11. Kuffler, D. P., Thompson, W. & Jansen, J. K. S. Proc. R. Soc. 208, 189–222 (1980).
    ADS CAS Google Scholar
  12. Frank, E., Gautvik, K. & Sommerschild, H. Acta Physiol., Scand. 95, 66–76 (1976).
    Article Google Scholar
  13. Carraro, U. & Catani, C. Biochem. biophys. Res. Commun. 116, 793–802 (1983).
    Article CAS Google Scholar
  14. Gauthier, G. F., Burke, R. E., Lowey, S. & Hobbs, A. W. J. Cell Biol. 97, 756–771 (1983).
    Article CAS Google Scholar
  15. Salmons, S. & Sreter, F. A. Nature 263, 30–34 (1976).
    Article ADS CAS Google Scholar
  16. Pette, D. & Schnez, U. FEES Lett. 83, 128–130 (1977).
    Article CAS Google Scholar
  17. Guth, L. Physiol. Rev. 48, 645–687 (1968).
    Article CAS Google Scholar
  18. Gutmann, E. A. Rev. Physiol. 38, 177–216 (1976).
    Article CAS Google Scholar
  19. McArdle, J. J. Prog. Neurobiol. 21, 135–198 (1983).
    Article CAS Google Scholar
  20. Lomo, T. & Westgaard, R. H. J. Physiol., Lond. 252, 603–626 (1975).
    Article CAS Google Scholar
  21. Pavlath, G. K. & Blau, H. M. J. Cell Biol. 102, 124–130 (1986).
    Article CAS Google Scholar
  22. Frair, P. M. & Peterson, A. C. Expl. Cell Res. 145, 167–178 (1983).
    Article CAS Google Scholar
  23. Towbin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).
    Article ADS CAS Google Scholar
  24. Szent-Gyorgyi, A. G. J. biol Chem. 192, 361–369 (1951).
    CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

  1. Centre di Studio per la Biologia e Fisiopatologia Muscolare del CNR, via Loredan 16, 35131, Padova, Italy
    G. Salviati
  2. Istituto di Patologia Generale dell'Universita' di Padova, via Loredan 16, 35131, Padova, Italy
    G. Salviati, E. Biasia & M. Aloisi

Authors

  1. G. Salviati
    You can also search for this author inPubMed Google Scholar
  2. E. Biasia
    You can also search for this author inPubMed Google Scholar
  3. M. Aloisi
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Salviati, G., Biasia, E. & Aloisi, M. Synthesis of fast myosin induced by fast ectopic innervation of rat soleus muscle is restricted to the ectopic endplate region.Nature 322, 637–639 (1986). https://doi.org/10.1038/322637a0

Download citation