Symbiosis of methylotrophic bacteria and deep-sea mussels (original) (raw)

Nature volume 325, pages 346–348 (1987)Cite this article

Abstract

Recently, dense assemblages of seep mussels and other benthic invertebrates resembling hydrothermal vent communities were found associated with reducing sediments at hypersaline seeps in the abyssal gulf of Mexico1. A symbiotic association with sulphur-oxidizing chemolithoautotrophic bacteria, similar to those recently reported (for review see ref. 2), was postulated for the seep mussel. However, the very negative δC13 values reported for the mussels (-74%‰) (ref. 3) suggested that these symbioses were different from those reported for bivalves from hydrothermal vents and reducing sediments (where δC13 ranges from -23 to -34‰ refs 4,5). Here, we present microscopical and enzymatic evidence supporting the hypothesis that methylotrophs, bacteria capable of using reduced C-1 compounds as their carbon and energy sources, occur as intracellular symbionts of the seep mussel.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Paull, C. K. et al. Science 226, 965–967 (1984).
    Article ADS CAS PubMed Google Scholar
  2. Cavanaugh, C. M. Biol. Soc. Wash. Bull. 6, 373–388 (1985).
    Google Scholar
  3. Paull, C. K., Jull, A. J. T., Toolin, L. J. & Linick, T. Nature 317, 709–711 (1985).
    Article ADS CAS Google Scholar
  4. Rau, G. H. & Hedges, J. I. Science 203, 648–649 (1979).
    Article ADS CAS PubMed Google Scholar
  5. Spiro, B., Greenwood, P. B., Southward, A. J. & Dando, P. R. Mar. Ecol. Prog. Ser. 28, 233–240 (1986).
    Article ADS CAS Google Scholar
  6. Claypool, G. E. & Kaplan, I. R. in Natural Gases in Marine Sediments (ed. Kaplan, I. R.) 99–139 (Plenum, New York, 1974).
    Book Google Scholar
  7. Cavanaugh, C. M. Nature 302, 58–61 (1983).
    Article ADS CAS Google Scholar
  8. Coleman, A. W. Limnol Oceanogr. 25, 948–951 (1980).
    Article ADS Google Scholar
  9. Giere, O. Zoomorphology 105, 296–301 (1985).
    Article Google Scholar
  10. Dando, P. R., Southward, A. J., Southward, E. C., Terwilliger, N. B. & Terwilliger, R. C. Mar. Ecol. Prog. Ser. 23, 85–98 (1985).
    Article ADS CAS Google Scholar
  11. Fiala-Medioni, A. & Metivier, C. Mar. Biol. 90, 215–222 (1986).
    Article Google Scholar
  12. Remsen, C. C. Int. Rev. Cytol. 76, 195–223 (1982).
    Article CAS PubMed Google Scholar
  13. Anthony, C. The Biochemistry of Methylotrophs (Academic, London, 1982).
    Google Scholar
  14. Lowry, O. H., Rosebrough, N. J, Fair, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).
    CAS PubMed Google Scholar
  15. Lidstrom, M. E. & Somers, L. Appl. environ. Microbiol. 47, 1255–1260 (1984).
    CAS PubMed PubMed Central Google Scholar
  16. Habets-Crutzen, A. Q. H., Brink, L. E. S., van Ginkel, C. G., de Bont, J. A. M. & Tramper, J. Appl. Microbiol. Biotechnol. 20, 245–250 (1984).
    Article Google Scholar
  17. Prior, S. D. & Dalton, H. J. gen. Microbiol. 131, 155–163 (1985).
    CAS Google Scholar
  18. Weaver, C. A. & Lidstrom, M. E. J. gen. Microbiol. 131, 2183–2197 (1985).
    CAS PubMed Google Scholar
  19. Levering, P. R., van Dijken, J. P., Veenhuis, M. & Harder, W. Arch. Microbiol. 129, 72–80 (1981).
    Article CAS PubMed Google Scholar
  20. Large, P. J. & Quayle, J. R. Biochem. J. 87, 386–395 (1963).
    Article CAS PubMed PubMed Central Google Scholar
  21. Blackmore, M. A. & Quayle, J. R. Biochem. J. 118, 53–59 (1970).
    Article CAS PubMed PubMed Central Google Scholar
  22. Beudeker, R. F., Cannon, G. C., Kuenen, J. G. & Shively, J. M. Arch. Microbiol. 124, 185–189 (1977).
    Google Scholar
  23. Tabita, F. R., Caruso, P. & Whitman, W. Analyt. Biochem. 84, 462–472 (1978).
    Article CAS PubMed Google Scholar
  24. Southward, A. J. et al. Nature 293, 616–620 (1981).
    Article ADS Google Scholar
  25. Kulm, L. D. et al. Science 231, 561–566 (1986).
    Article ADS CAS PubMed Google Scholar
  26. Childress, J. J. et al. Science 233, 1306–1308 (1986).
    Article ADS CAS PubMed Google Scholar

Download references

Author information

Author notes

  1. Colleen M. Cavanaugh
    Present address: The Biological Laboratories, Harvard University, Cambridge, Massachusetts, 02138, USA
  2. Piet R. Levering
    Present address: Microbiological Research and Development Laboratories, Organon International, PO Box 20, 5340 BH, Oss, The Netherlands

Authors and Affiliations

  1. Laboratory of Microbiology, Delft University of Technology, 2628 BC, Delft, The Netherlands
    Colleen M. Cavanaugh
  2. Department of Microbiology, Biological Centre, University of Gronigen, Kerklaan 30, 9751 NN, Haren, The Netherlands
    Piet R. Levering
  3. Laboratory of Microbial Ecology, Division of Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA
    James S. Maki & Ralph Mitchell
  4. Center for Great Lake Studies, University of Wisconsin-Milwaukee, 600 E. Greenfield, Milwaukee, Wisconsin, 53204, USA
    Mary E. Lidstrom

Authors

  1. Colleen M. Cavanaugh
    You can also search for this author inPubMed Google Scholar
  2. Piet R. Levering
    You can also search for this author inPubMed Google Scholar
  3. James S. Maki
    You can also search for this author inPubMed Google Scholar
  4. Ralph Mitchell
    You can also search for this author inPubMed Google Scholar
  5. Mary E. Lidstrom
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Cavanaugh, C., Levering, P., Maki, J. et al. Symbiosis of methylotrophic bacteria and deep-sea mussels.Nature 325, 346–348 (1987). https://doi.org/10.1038/325346a0

Download citation

This article is cited by