Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry (original) (raw)

References

  1. Carpenter, C.C. et al. Anti-retroviral therapy for HIV infection in 1998. J. Am. Med. Assoc. 280, 78–86 (1998).
    Article CAS Google Scholar
  2. Eron, J.J. et al. Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD4+ cells per cubic millimeter. N. Engl. J. Med. 333, 1662–9 ( 1995).
    Article CAS Google Scholar
  3. Markowitz, M. et al. A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. N. Engl. J. Med. 333, 1534–9 (1995).
    Article CAS Google Scholar
  4. Hammer, S. et al. A randomized, placebo-controlled trial of indinavir in combination with two nucleoside analogs in HIV-infected persons with CD4 cell counts less than or equal to 200 per cubic millimeter. N. Engl. J. Med. 337, 725 (1997).
    Article CAS Google Scholar
  5. Saag, M.S. Nucleoside analogs: adverse effects. Hosp. Pract. 27 (supp), 26-36 (1992).
  6. McDonald, C.K. & Kuritzkes, D.R. HIV-1 protease inhibitors. Arch. Intern. Med. 157, 951–959 (1997).
    Article CAS Google Scholar
  7. Richman, D.D. Resistance of clinical isolates of HIV to anti-retroviral agents. Antimicrob. Agents Chemother. 37, 1207– 1213 (1993).
    Article CAS Google Scholar
  8. Condra, J.H. et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374, 569– 71 (1995).
    Article CAS Google Scholar
  9. Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 ( 1998).
    Article CAS Google Scholar
  10. Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–73 (1997).
    Article CAS Google Scholar
  11. Gallaher, W., Ball, J., Garry, R., Griffin, M. & Montelaro R. A general model of the transmembrane proteins of HIV and other retroviruses. AIDS Res. Hum. Retroviruses 5, 431–40 (1989).
    Article CAS Google Scholar
  12. Delwart, E., Mosialos, G. & Gilmore, T. Retroviral envelope glycoproteins contain a "leucine zipper"-like repeat. AIDS Res. Hum. Retroviruses 6, 703–6 (1989).
    Article Google Scholar
  13. Chen, C.H., Matthews, T., McDanal, C., Bolognesi, D. & Greenberg M. A molecular clasp in HIV-1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J. Virol. 69, 3771–7 ( 1995).
    CAS PubMed PubMed Central Google Scholar
  14. Lawless, M.K. et al. HIV-1 membrane fusion mechanism: structural studies of the interactions between biologically-active peptides from gp41. Biochemistry 35, 13697–708 ( 1996).
    Article CAS Google Scholar
  15. Matthews, T. et al. Structural rearrangements in the transmembrane glycoprotein after receptor binding. Immunol. Rev. 140, 93–104 (1994).
    Article CAS Google Scholar
  16. Wild, C., Greenwell, T., Shugars, D., Rimsky-Clarke & Matthews T. The inhibitory activity of an HIV-1 peptide correlates with its ability to interact with a leucine zipper structure. AIDS Res. Hum. Retroviruses 11, 323–5 (1995).
    Article CAS Google Scholar
  17. Wild C., Oas T., McDanal C., Bolognesi D. & Matthews T. A synthetic peptide inhibitor of HIV replication: correlation between solution structure and viral inhibition. Proc. Natl. Acad. Sci. USA 89, 10537–41 ( 1992).
    Article CAS Google Scholar
  18. Tan, K., Liu, J.H., Want, J.H., Shen, S., & Lu, M. Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc. Natl. Acad. Sci. USA 94, 12303–308 (1997).
    Article CAS Google Scholar
  19. Weissenhorn, W.A., Dessen, A., Harrison, S.C., Skehel, J.J. & Wiley, D.C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426– 30 (1997).
    Article CAS Google Scholar
  20. Dubay, J., Roberts, S., Brody, B. & Hunter, E. Mutations in the leucine zipper of HIV-1 transmembrane glycoprotein affect fusion and infectivity. J. Virol. 66, 4748–56 (1992).
    CAS PubMed PubMed Central Google Scholar
  21. Wild, C. et al. Propensity for a leucine zipper-like domain of HIV-1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc. Natl. Acad. Sci. USA 91, 12676–80 ( 1994).
    Article CAS Google Scholar
  22. Bullough, P.A., Hughson, M., Skehel, J.J. & Wiley, D.C. Structure of influena haemagglutinin at the pH of membrane fusion. J. Virol. 371, 37–43 ( 1994).
    CAS Google Scholar
  23. Carr, C. & Kim, P.S. A spring-loaded mechanism for the conformational change of influenza hemaglutinin. Cell 73, 823–32 (1993).
    Article CAS Google Scholar
  24. Wild, C., Greenwell, T. & Matthews, T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res. Hum. Retroviruses 9, 1051–3 (letter) ( 1993).
    Article CAS Google Scholar
  25. Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B. & Matthews, T.J. Peptides corresponding to a predictive alpha-helical domain of HIV-1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA 91, 9770– 4 (1994).
    Article CAS Google Scholar
  26. Rimsky, L.T., Shugars, D.C. & Matthews, T. Determinants of HIV-1 resistance to gp41-derived inhibitory peptides. J. Virol. 72, 986– 992 (1998).
    CAS PubMed PubMed Central Google Scholar
  27. Wei, X, et al. Viral dynamics in HIV-1 infection. Nature 373, 117–22 (1995).
    Article CAS Google Scholar
  28. Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123– 26 (1995).
    Article CAS Google Scholar
  29. Herz, A.V.M., Bonhoeffer, S., Anderson, R.M., May, R.M. & Nowak, M.A. Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. USA 93, 7247–51 (1996).
    Article CAS Google Scholar
  30. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M. & Ho, D.D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–86 ( 1996).
    Article CAS Google Scholar
  31. Montaner, J.S.G. et al. A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients. J. Am. Med. Assoc. 279, 930–37 (1998).
    Article CAS Google Scholar
  32. Nowak, M.A., Bonhoeffer, S., Shaw, G.M. & May, R.M. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. Theor. Biol. 184, 203 –17 (1997).
    Article CAS Google Scholar
  33. Bonhoeffer, S., May, R.M., Shaw, G.M. & Nowak, M.A. Virus dynamics and drug treatment. Proc. Natl. Acad. Sci. USA 94, 6971–76 (1997).
    Article CAS Google Scholar
  34. Perelson, A.S. et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997).
    Article CAS Google Scholar
  35. Baba, M. et al. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of HIV in vitro. Proc. Natl. Acad. Sci. USA 85, 6132–36 (1988).
    Article CAS Google Scholar
  36. Mitsuya, H. et al. Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science 240, 646–48 (1988).
    Article CAS Google Scholar
  37. Flexner, C. et al. Pharmacokinetics, toxicity, and activity of intravenous dextran sulfate in HIV infection. Antimicrob. Agents Chemother. 35, 2544–50 (1991).
    Article CAS Google Scholar
  38. Fisher, R.A. et al. HIV infection is blocked in vitro by recombinant soluble CD4. Nature 331, 76–78 (1988).
    Article CAS Google Scholar
  39. Schooley, R.T. et al. Recombinant soluble CD4 therapy in patients with AIDS and AIDS-related complex. Ann. Intern. Med. 112, 247–53 (1990).
    Article CAS Google Scholar
  40. Meng, T.C. et al. Combination therapy with recombinant human soluble CD4-immunoglobulin G and zidovudine in patients with HIV infection: a phase I study. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 8, 152–160 (1995).
    Article CAS Google Scholar
  41. Shacker, T. et al. Phase I study of high-dose, intravenous rsCD4 in subjects with advanced HIV-1 infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 9145–152 ( 1995).
  42. Chen, J.D., Bai, X., Yang, A.G., Cong, Y. & Chen, S.Y. Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nature Med. 3, 1110–1116 (1997).
    Article CAS Google Scholar
  43. Donzella, G.A. et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Med. 4, 72– 77 (1998).
    Article CAS Google Scholar
  44. Zinman, B., Tildesley, H., Chiasson, J.L., Tsui, E. & Strack, T. Insulin Lispro in CSII: results of a double-blind crossover study. Diabetes 46, 44043 (1997).
    Article Google Scholar
  45. Pachl, C. et al. Rapid and precise quantification of HIV-1 RNA in plasma using a branched DNA signal amplification assay . J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 8, 446–54 (1995).
    Article CAS Google Scholar
  46. Cao, Y. et al. Clinical evaluation of branched DNA signal amplification for quantifying HIV type 1 in human plasma. AIDS Res. Hum. Retroviruses 11, 353–61 (1995).
    Article CAS Google Scholar
  47. Schockmel, G.A., Yerly, S. & Perrin, L. Detection of low HIV-1 levels in plasma. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 14, 179 –83 (1997).
    Article CAS Google Scholar
  48. SAS/STAT User's Guide Version 6, 4th edn., Vol. 1 & 2 (SAS Institute, Cary, North Carolina, 1989 ).
  49. Chan, D. C. and Kim P. S. HIV Entry and Its Inhibition. Cell 93, 681–84 ( 1998).
    Article CAS Google Scholar

Download references