Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry (original) (raw)
References
Carpenter, C.C. et al. Anti-retroviral therapy for HIV infection in 1998. J. Am. Med. Assoc.280, 78–86 (1998). ArticleCAS Google Scholar
Eron, J.J. et al. Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD4+ cells per cubic millimeter. N. Engl. J. Med.333, 1662–9 ( 1995). ArticleCAS Google Scholar
Markowitz, M. et al. A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. N. Engl. J. Med.333, 1534–9 (1995). ArticleCAS Google Scholar
Hammer, S. et al. A randomized, placebo-controlled trial of indinavir in combination with two nucleoside analogs in HIV-infected persons with CD4 cell counts less than or equal to 200 per cubic millimeter. N. Engl. J. Med.337, 725 (1997). ArticleCAS Google Scholar
Richman, D.D. Resistance of clinical isolates of HIV to anti-retroviral agents. Antimicrob. Agents Chemother.37, 1207– 1213 (1993). ArticleCAS Google Scholar
Condra, J.H. et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature374, 569– 71 (1995). ArticleCAS Google Scholar
Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature393, 648–659 ( 1998). ArticleCAS Google Scholar
Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell89, 263–73 (1997). ArticleCAS Google Scholar
Gallaher, W., Ball, J., Garry, R., Griffin, M. & Montelaro R. A general model of the transmembrane proteins of HIV and other retroviruses. AIDS Res. Hum. Retroviruses5, 431–40 (1989). ArticleCAS Google Scholar
Delwart, E., Mosialos, G. & Gilmore, T. Retroviral envelope glycoproteins contain a "leucine zipper"-like repeat. AIDS Res. Hum. Retroviruses6, 703–6 (1989). Article Google Scholar
Chen, C.H., Matthews, T., McDanal, C., Bolognesi, D. & Greenberg M. A molecular clasp in HIV-1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J. Virol.69, 3771–7 ( 1995). CASPubMedPubMed Central Google Scholar
Lawless, M.K. et al. HIV-1 membrane fusion mechanism: structural studies of the interactions between biologically-active peptides from gp41. Biochemistry35, 13697–708 ( 1996). ArticleCAS Google Scholar
Matthews, T. et al. Structural rearrangements in the transmembrane glycoprotein after receptor binding. Immunol. Rev.140, 93–104 (1994). ArticleCAS Google Scholar
Wild, C., Greenwell, T., Shugars, D., Rimsky-Clarke & Matthews T. The inhibitory activity of an HIV-1 peptide correlates with its ability to interact with a leucine zipper structure. AIDS Res. Hum. Retroviruses11, 323–5 (1995). ArticleCAS Google Scholar
Wild C., Oas T., McDanal C., Bolognesi D. & Matthews T. A synthetic peptide inhibitor of HIV replication: correlation between solution structure and viral inhibition. Proc. Natl. Acad. Sci. USA89, 10537–41 ( 1992). ArticleCAS Google Scholar
Tan, K., Liu, J.H., Want, J.H., Shen, S., & Lu, M. Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc. Natl. Acad. Sci. USA94, 12303–308 (1997). ArticleCAS Google Scholar
Weissenhorn, W.A., Dessen, A., Harrison, S.C., Skehel, J.J. & Wiley, D.C. Atomic structure of the ectodomain from HIV-1 gp41. Nature387, 426– 30 (1997). ArticleCAS Google Scholar
Dubay, J., Roberts, S., Brody, B. & Hunter, E. Mutations in the leucine zipper of HIV-1 transmembrane glycoprotein affect fusion and infectivity. J. Virol.66, 4748–56 (1992). CASPubMedPubMed Central Google Scholar
Wild, C. et al. Propensity for a leucine zipper-like domain of HIV-1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc. Natl. Acad. Sci. USA91, 12676–80 ( 1994). ArticleCAS Google Scholar
Bullough, P.A., Hughson, M., Skehel, J.J. & Wiley, D.C. Structure of influena haemagglutinin at the pH of membrane fusion. J. Virol.371, 37–43 ( 1994). CAS Google Scholar
Carr, C. & Kim, P.S. A spring-loaded mechanism for the conformational change of influenza hemaglutinin. Cell73, 823–32 (1993). ArticleCAS Google Scholar
Wild, C., Greenwell, T. & Matthews, T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res. Hum. Retroviruses9, 1051–3 (letter) ( 1993). ArticleCAS Google Scholar
Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B. & Matthews, T.J. Peptides corresponding to a predictive alpha-helical domain of HIV-1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA91, 9770– 4 (1994). ArticleCAS Google Scholar
Rimsky, L.T., Shugars, D.C. & Matthews, T. Determinants of HIV-1 resistance to gp41-derived inhibitory peptides. J. Virol.72, 986– 992 (1998). CASPubMedPubMed Central Google Scholar
Wei, X, et al. Viral dynamics in HIV-1 infection. Nature373, 117–22 (1995). ArticleCAS Google Scholar
Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature373, 123– 26 (1995). ArticleCAS Google Scholar
Herz, A.V.M., Bonhoeffer, S., Anderson, R.M., May, R.M. & Nowak, M.A. Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. USA93, 7247–51 (1996). ArticleCAS Google Scholar
Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M. & Ho, D.D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science271, 1582–86 ( 1996). ArticleCAS Google Scholar
Montaner, J.S.G. et al. A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients. J. Am. Med. Assoc.279, 930–37 (1998). ArticleCAS Google Scholar
Nowak, M.A., Bonhoeffer, S., Shaw, G.M. & May, R.M. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. Theor. Biol.184, 203 –17 (1997). ArticleCAS Google Scholar
Bonhoeffer, S., May, R.M., Shaw, G.M. & Nowak, M.A. Virus dynamics and drug treatment. Proc. Natl. Acad. Sci. USA94, 6971–76 (1997). ArticleCAS Google Scholar
Perelson, A.S. et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature387, 188–191 (1997). ArticleCAS Google Scholar
Baba, M. et al. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of HIV in vitro. Proc. Natl. Acad. Sci. USA85, 6132–36 (1988). ArticleCAS Google Scholar
Mitsuya, H. et al. Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science240, 646–48 (1988). ArticleCAS Google Scholar
Flexner, C. et al. Pharmacokinetics, toxicity, and activity of intravenous dextran sulfate in HIV infection. Antimicrob. Agents Chemother.35, 2544–50 (1991). ArticleCAS Google Scholar
Fisher, R.A. et al. HIV infection is blocked in vitro by recombinant soluble CD4. Nature331, 76–78 (1988). ArticleCAS Google Scholar
Schooley, R.T. et al. Recombinant soluble CD4 therapy in patients with AIDS and AIDS-related complex. Ann. Intern. Med.112, 247–53 (1990). ArticleCAS Google Scholar
Meng, T.C. et al. Combination therapy with recombinant human soluble CD4-immunoglobulin G and zidovudine in patients with HIV infection: a phase I study. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.8, 152–160 (1995). ArticleCAS Google Scholar
Shacker, T. et al. Phase I study of high-dose, intravenous rsCD4 in subjects with advanced HIV-1 infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 9145–152 ( 1995).
Chen, J.D., Bai, X., Yang, A.G., Cong, Y. & Chen, S.Y. Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nature Med.3, 1110–1116 (1997). ArticleCAS Google Scholar
Donzella, G.A. et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Med.4, 72– 77 (1998). ArticleCAS Google Scholar
Zinman, B., Tildesley, H., Chiasson, J.L., Tsui, E. & Strack, T. Insulin Lispro in CSII: results of a double-blind crossover study. Diabetes46, 44043 (1997). Article Google Scholar
Pachl, C. et al. Rapid and precise quantification of HIV-1 RNA in plasma using a branched DNA signal amplification assay . J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.8, 446–54 (1995). ArticleCAS Google Scholar
Cao, Y. et al. Clinical evaluation of branched DNA signal amplification for quantifying HIV type 1 in human plasma. AIDS Res. Hum. Retroviruses11, 353–61 (1995). ArticleCAS Google Scholar
Schockmel, G.A., Yerly, S. & Perrin, L. Detection of low HIV-1 levels in plasma. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.14, 179 –83 (1997). ArticleCAS Google Scholar
SAS/STAT User's Guide Version 6, 4th edn., Vol. 1 & 2 (SAS Institute, Cary, North Carolina, 1989 ).
Chan, D. C. and Kim P. S. HIV Entry and Its Inhibition. Cell93, 681–84 ( 1998). ArticleCAS Google Scholar