Combined PET/MRS brain studies show dynamic and long-term physiological changes in a primate model of Parkinson disease (original) (raw)
Gjaedde, A. & Wong, D.F. Modeling neuroreceptor binding of radioligands in vivo. Quant. Imaging 51– 79 (1990).
Delforge, J. et al. Kinetic analysis of central (76)bromolisuride binding to dopamine D2-receptors studied by PET. J. Cereb. Blood Flow Metab.11, 914–925 ( 1991). ArticleCAS Google Scholar
Leenders, K.L. Pathophysiology of movement disorders studied using PET. J. Neural Transm. Suppl.50, 39–46 (1997). ArticleCAS Google Scholar
Cruz, C.J., Aminoff, M.J., Meyerhoff, D.J., Graham, S.H. & Weiner, M.W. Proton MR spectroscopic imaging of the striatum in Parkinson's disease. Magn. Reson. Imaging15, 619–624 (1997). ArticleCAS Google Scholar
Holshouser, B.A. et al. Localized proton NMR spectroscopy in the striatum of patients with idiopathic Parkinson's disease: a multicenter pilot study. Magn. Reson. Imaging33, 589–594 (1995). CAS Google Scholar
Brooks, D.J. PET studies on the early and differential diagnosis of Parkinson's disease. Neurology43, S6–S16 (1993). CASPubMed Google Scholar
Herholz, K. et al.In vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann. Neurol.31, 319–327 (1992). ArticleCAS Google Scholar
Alger, J.R., Frank, J.L., van Zijl, P.C., Moonen, C.T. & DiChiro, G. Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology177, 633–641 ( 1990). ArticleCAS Google Scholar
Hugg, J.W. et al. Elevated lactate and alkalosis in chronic human brain infarction observed by 1H and 31P MR spectroscopic imaging. J. Cereb. Blood Flow Metab.12, 734–744 (1992). ArticleCAS Google Scholar
Petroff, O.A. et al. Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes. Neurology42, 1349–1354 (1992). ArticleCAS Google Scholar
Prichard, J. et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. USA88, 5829–5831 (1991). ArticleCAS Google Scholar
Schapira, A.H. Pathogenesis of Parkinson's disease. Baillieres Clin. Neurol.6, 15–36 (1997). CASPubMed Google Scholar
Frost, J.J. et al. Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease. Ann. Neurol.34, 423–431 (1993). ArticleCAS Google Scholar
Ehringer, H. & Hornykiewicz, O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin. Wochenschr.38, 1236–1239 (1960). ArticleCAS Google Scholar
Dunnett, S.B., Whishaw, I.Q., Jones, G.H. & Isacson, O. Effects of dopamine-rich grafts on conditioned rotation in rats with unilateral 6-hydroxydopamine lesions. Neurosci. Lett.68, 127–135 (1986). ArticleCAS Google Scholar
Ungerstedt, U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol.5, 107–110 (1968). ArticleCAS Google Scholar
Langston, J.W., Langston, E.B. & Irwin, I. MPTP-induced parkinsonism in human and non-human primates—clinical and experimental aspects. Acta Neurol. Scand. Suppl.100, 49–54 (1984). CASPubMed Google Scholar
Calne, D.D. et al. Positron emission tomography after MPTP. Nature317, 244–248 ( 1985). Article Google Scholar
Burns, R.S. et al. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA80, 4546– 4550 (1983). ArticleCAS Google Scholar
Hantraye, P. et al. In vivo visualization by positron emission tomography of the progressive striatal dopamine receptor damage occuring in MPTP-intoxicated non-human primates. Life Sci.39, 1375– 1382 (1986). ArticleCAS Google Scholar
Imai, H., Nakamura, T., Endo, K. & Narabayashi, H. Hemiparkinsonism in monkeys after unilateral caudate nucleus infusion of 1-methyl-4-phenyl-1,2,3,6-tetrapyridine (MPTP): behavior and histology. Brain Res.474, 327–338 (1988). ArticleCAS Google Scholar
Hantraye, P. et al. Dopamine fiber detection by [11 C]-CFT and PET in a primate model of parkinsonism. Neuroreport3, 265 –268 (1992). ArticleCAS Google Scholar
Wullner, U. et al. Dopamine terminal loss and onset of motor symptoms in MPTP-treated monkeys: a positron emission tomography study with 11C-CFT. Exp. Neurol.126, 305–309 ( 1994). ArticleCAS Google Scholar
Temlett, J.A. Parkinson's disease: biology and aetiology. Curr. Opin. Neurol.9, 303–307 ( 1996). ArticleCAS Google Scholar
Frohna, P.A., Rothblat, D.S., Joyce, J.N. & Schneider, J.S. Alterations in dopamine uptake sites and D1 and D2 receptors in cats symptomatic for and recovered from experimental parkinsonism. Synapse19, 46–55 (1995). ArticleCAS Google Scholar
Strauss, I., Williamson, J.M., Bertram, E.H., Lothman, E.W. & Fernandez, E.J. Histological and 1H magnetic resonance spectroscopic imaging analysis of quinolinic acid-induced damage to the rat striatum. Magn. Reson. Med.37, 24–33 (1997). ArticleCAS Google Scholar
Higuchi, T. et al. Effects of severe global ischemia on N-acetylaspartate and other metabolites in the rat brain. Magn. Reson. Med.37, 851–857 (1997). ArticleCAS Google Scholar
Jenkins, B.G., et al. Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging. J. Cereb. Blood Flow Metab.16, 450– 461 (1996). ArticleCAS Google Scholar
Guimareaeas, A.R. et al. Quantitative nuclear magnetic resonance spectroscopic imaging of neuronal loss in excitotoxic rat brain model. Neuroscience69, 1093–1101 ( 1995). Google Scholar
Arnold, D.L. et al. Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann. Neurol.36, 76–82 (1994). ArticleCAS Google Scholar
Davies, C.A. et al. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain11, 49– 58 (1994). Article Google Scholar
Birken, D.L. & Olendorf, W.H. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of the brain. Neurosci. Biobehav.1, 23– 31 (1989). Article Google Scholar
Urenjak, J., Williams, S.R., Gadian, D.G. & Noble, M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J. Neurosci.13, 981– 989 (1993). ArticleCAS Google Scholar
Brownell, G.L. et al. Development in high-resolution positron emission tomography at MGH. Int. J. Imag. Sys. Technol.1, 207 –17 (1989). Article Google Scholar
Derenzo, S.E., Huesman, R.H. & Cahoon, J.L. A positron tomograph with 600 BGO crystals and 2.6 mm resolution. IEEE Trans. Nucl. Sci.NS-35, 659–664 (1988).
Brownell, G.L., Burnham, C.A. & Chesler, D.A. in The Metabolism of the Human Brain Studied With Positron Emission Tomography, Ed. (eds. Greitz, T., Ingvar, D.H. & Widen, L.) 13–19 (Raven, New York, 1985). Google Scholar
Bugiani, O., Perdelli, F., Salvarani, S., Leonardi, A. & Mancardi, G.L. Loss of striatal neurons in Parkinson's disease: a cytometric study. Eur. Neurol.19, 339–344 (1980). ArticleCAS Google Scholar
Hwang, J.H. et al. Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in human brain. Magn. Reson. Med.35, 633–639 (1996). ArticleCAS Google Scholar
Frost, J.J. et al. Multicompartmental analysis of [11C]-carfentanil binding to opiate receptors in humans measured by positron emission tomography. J. Cereb. Blood Flow Metab.9, 398– 409 (1989). ArticleCAS Google Scholar
Kaufman, M.J. & Madras, B.K. Severe depletion of cocaine recognition sites associated with the dopamine transporter in parkinson's diseased striatum. Synapse9 (1991).
McNeil, T.H., Brown, S.A., Rafols, J.A. & Shoulson, I. Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease. Brain Res.455, 148–152 (1988). Article Google Scholar
Federico, F. et al. Proton magnetic resonance spectroscopy in parkinson's disease and atypical parkinsonian disorders. Mov. Disord.12 , 903–909 (1997). ArticleCAS Google Scholar
Clarke, C.E., Lowry, M. & Horsman, A. Unchanged basal ganglia N-acetylaspartate and glutamate in idiopathic parkinson's disease measured by protonmagnetic resonance spectroscopy. Mov. Disord.12, 297–301 (1997). ArticleCAS Google Scholar
Carvey, P. et al. Alterations in striatal neurotrophic activity induced by dopaminergic drugs. Pharmacol. Biochem. Behav.46, 195–204 (1993). ArticleCAS Google Scholar
Brownell, A.-L. et al. Cocaine congeners as PET imaging probes for dopamine terminals. J. Nucl. Med.37, 1186– 1192 (1996). CASPubMed Google Scholar