Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb (original) (raw)

Nature volume 331, pages 166–168 (1988)Cite this article

Abstract

The encoding of olfactory information in the central nervous system (CNS) depends on spatially distributed patterns of activity generated simultaneously in many neuronal circuits11–4. Optical neurophysiological recording permits analysis of neural activity non-invasively and with high spatial and temporal resolution5. Here, a video method for imaging voltage-sensitive dye fluorescence in vivo is used to map neuronal activity in local circuits of the salamander olfactory bulb. The method permits the imaging of simultaneous ensemble transmembrane activity in real time. After electrical stimulation of the olfactory nerve, activity spreads centripetally from the sites of synaptic input to generate non-homogeneous response patterns that are presumably mediated by local circuits within the bulbar layers. The results also show the overlapping temporal sequences of activation of cell groups in each layer. The method thus provides high resolution, sequential video images of the spatial and temporal progression of transmembrane events in neuronal circuits after afferent stimulation and offers the opportunity for studying ensemble events in other brain regions.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Kauer, J. S. in Neurobiology of Taste and Smell (eds Finger, T. E. & Silver, W. L.) 205–231 (Wiley, New York, 1987).
    Google Scholar
  2. Shepherd, G. M. in Taste, Olfaction and the Central Nervous System (ed. Pfaff, D. W.) 307–332 (Rockefeller, New York, 1985).
    Google Scholar
  3. Gesteland, R. C., Lettvin, J. Y. & Pitts, W. H. J. Physiol., Lond. 181, 525–559 (1965).
    Article CAS Google Scholar
  4. Doving, K. B. Acta physiol. scand. 130, 285–298 (1987).
    Article CAS Google Scholar
  5. Cohen, L. B., Salzberg, B. M. & Grinvald, A. A. Rev. Neurosci. 1, 171–182 (1978).
    Article CAS Google Scholar
  6. Rall, W. & Shepherd, G. M. J. Neurophysiol. 31, 884–915 (1968).
    Article CAS Google Scholar
  7. Shepherd, G. M. Physiol. Rev. 52, 864–917 (1972).
    Article CAS Google Scholar
  8. Kauer, J. S. J. Physiol., Lond. 243, 695–715 (1974).
    Article CAS Google Scholar
  9. Hamilton, K. A. & Kauer, J. S. Brain Res. 338, 181–185 (1985).
    Article CAS Google Scholar
  10. Harrison, S. A. & Scott, J. W. J. Neurophysiol. 56, 1571–1589 (1986).
    Article CAS Google Scholar
  11. Macrides, F. & Chorover, S. Science 175, 84–87 (1972).
    Article ADS CAS Google Scholar
  12. Meredith, M. & Moulton, D. G. J. gen. Physiol. 71, 615–643 (1978).
    Article CAS Google Scholar
  13. Stewart, W. B., Kauer, J. S. & Shepherd, G. M. J. comp. Neurol. 185, 715–734 (1979).
    Article CAS Google Scholar
  14. Mori, K. Prog. Neurobiol. 29, 320–375 (1987).
    Article Google Scholar
  15. Grinvald, A., Anglister, L., Freeman, J. A., Hildesheim, R. & Manker, A. Nature 308, 848–850 (1984).
    Article ADS CAS Google Scholar
  16. Kauer, J. S. & Shepherd, G. M. Brain Res. 85, 108–113 (1975).
    Article CAS Google Scholar
  17. Getchell, T. V. & Shepherd, G. M. J. Physiol., Lond. 282, 521–540 (1978).
    Article CAS Google Scholar
  18. Ohrbach, H. S. & Cohen, L. B. J. Neurosci. 3, 2251–2262 (1983).
    Article Google Scholar
  19. Kauer, J. S., Senseman, D. & Cohen, L. B. Brain Res. 418, 255–261 (1987).
    Article CAS Google Scholar
  20. Cohen, L. B. & Salzberg, B. M. Rev. Physiol. Biochem. Pharmac. 83, 35–88 (1978).
    Article CAS Google Scholar
  21. Kauer, J. S. Anat. Rec. 200, 331–336 (1981).
    Article CAS Google Scholar
  22. Stewart, W. B. & Pedersen, P. E. Brain Res. 411, 248–258 (1987).
    Article CAS Google Scholar
  23. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D. & Wiesel, T. N. Nature 324, 361–364 (1986).
    Article ADS CAS Google Scholar
  24. Blasdel, G. G. & Salama, G. Nature 321, 579–585 (1986).
    Article ADS CAS Google Scholar
  25. Konnerth, A. & Orkand, R. Neurosci. Lett. 66, 49–54 (1986).
    Article CAS Google Scholar
  26. Konnerth, A., Obaid, A. L. & Salzberg, B. M. Biol. Bull. 169, 553 (1985).
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. Departments of Neurosurgery,and Anatomy and Cell Biology, New England Medical Center and Tufts Medical School, Boston, Massachusetts, 02111, USA
    John S. Kauer

Authors

  1. John S. Kauer
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Kauer, J. Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb.Nature 331, 166–168 (1988). https://doi.org/10.1038/331166a0

Download citation

This article is cited by