A yeast activity can substitute for the HeLa cell TATA box factor (original) (raw)

Nature volume 334, pages 77–80 (1988)Cite this article

Abstract

Most class B (II) promoter regions from higher eukaryotes contain the TATA box and upstream and enhancer elements1. Both the upstream and enhancer elements and their cognate factors have regulatory functions, whereas the TATA sequence interacts with the TATA box factor BTF1 to position RNA polymerase B and its ancillary initiation factors (STF, BTF2 and BTF3) to direct the initiation of transcription ∼30 base pairs downstream2. In many respects, class B promoter regions from the unicellular eukaryote Saccharomyces cerevisiae are similarly organized, containing upstream activating sequences that bear many similarities to enhancers3,4. Although they are essential for initiation, the yeast TATA sequences are located at variable distances and further from the start sites (40–120 base pairs), whose locations are primarily determined by an initiator element4. The basic molecular mechanisms that control initiation of transcription are known to be conserved from yeast to man: the yeast transcriptional _trans_-activator GAL4 can activate a minimal TATA box-containing promoter in human HeLa cells, and a human inducible enhancer factor, the oestrogen receptor, can activate a similar minimal promoter in yeast5–8. This striking evolutionary conservation prompted us to look for the presence in yeast of an activity that could possibly substitute for the human TATA box factor. We report here the existence of such an activity in yeast extracts.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Wasylyk, B. CRC Crit. Rev. Biochem. 23, (in the press).
  2. Zheng, X. M., Monocollin, V., Egly, J. M. & Chambon, P. Cell 50, 361–368 (1987).
    Article CAS Google Scholar
  3. Guarente, L. A. Rev. Genet. 21, 425–452 (1987).
    Article CAS Google Scholar
  4. Struhl, K. Cell 49, 295–297 (1987).
    Article CAS Google Scholar
  5. Webster, N., Jin, S. R., Green, S., Hollis, M. & Chambon, P. Cell 52, 169–178 (1988).
    Article CAS Google Scholar
  6. Kakidani, H. & Ptashne, M. Cell 52, 161–167 (1988).
    Article CAS Google Scholar
  7. Metzger, D., White, J. & Chambon, P. Nature (in the press).
  8. Guarente, L. Cell 52, 303–305 (1988).
    Article CAS Google Scholar
  9. Miyamoto, N. G. et al. Nucleic Acids Res. 12, 8779–8799 (1984).
    Article CAS Google Scholar
  10. Dezélée, S., Wyers, F., Sentenac, A. & Fromageot, P. Eur. J. Biochem. 65, 543–552 (1976).
    Article Google Scholar
  11. Moncollin, V., Miyamoto, N. G., Zheng, X. M. & Egly, J. M. EMBO J. 5, 2577–2584 (1986).
    Article CAS Google Scholar
  12. Davison, B. L., Egly, J. M., Mulvihill, E. R. & Chambon, P. Nature 301, 680–686 (1983).
    Article ADS CAS Google Scholar
  13. McNeil, J. B. & Smith, M. J. molec. Biol. 187, 363–378 (1986).
    Article CAS Google Scholar
  14. Fire, A., Samuels, M. & Sharp, P. A. J. biol. Chem. 259, 2509–2516 (1984).
    CAS Google Scholar
  15. Reinberg, D., Horikoshi, M. & Roeder, R. G. J. biol. Chem. 262, 3322–3330 (1987).
    CAS Google Scholar
  16. Reinberg, D. & Roeder, R. G. J. biol. Chem. 262, 3310–3321 (1987).
    CAS Google Scholar
  17. Huet, J., Sentenac, A. & Fromageot, P. J. biol. Chem. 257, 2613–2618 (1982).
    CAS PubMed Google Scholar
  18. Allison, L. A., Wong, J. K. C., Fitzpatrick, V. D., Moyle, M. & Ingles, C. J. Molec. cell. Biol. 8, 321–329 (1988).
    Article CAS Google Scholar
  19. Bartolomei, M. S., Halden, N. F., Ruta Cullen, C. & Corden, J. L. Molec. cell. Biol. 8, 330–339 (1988).
    Article CAS Google Scholar
  20. Biggs, J., Searles, L. L. & Greenleaf, A. L. Cell 42, 611–621 (1985).
    Article CAS Google Scholar
  21. Takahashi, K. et al. Nature 319, 121–126 (1986).
    Article ADS CAS Google Scholar
  22. Sawadogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).
    Article CAS Google Scholar
  23. Chodosh, L. A. et al. Cell 53, 25–35 (1988).
    Article CAS Google Scholar
  24. Wasylyk, C. & Wasylyk, B. EMBO J. 5, 553–560 (1986).
    Article CAS Google Scholar
  25. Moran, L. et al. Cell 17, 1–8 (1979).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologic Moléculaire et de Génie Génétique de 1'INSERM, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg Cédex, France
    Bruno Cavallini, Jean-Luc Plassat, Jean-Marc Egly & Pierre Chambon
  2. Département de Biologic, Service de Biochimie, Centre d'Etudes Nucléates de Saclay, 91191, Gif-Sur-Yvette Cédex, France
    Janine Huet & André Sentenac
  3. To whom correspondence should be addressed,
    Pierre Chambon

Authors

  1. Bruno Cavallini
    You can also search for this author inPubMed Google Scholar
  2. Janine Huet
    You can also search for this author inPubMed Google Scholar
  3. Jean-Luc Plassat
    You can also search for this author inPubMed Google Scholar
  4. André Sentenac
    You can also search for this author inPubMed Google Scholar
  5. Jean-Marc Egly
    You can also search for this author inPubMed Google Scholar
  6. Pierre Chambon
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Cavallini, B., Huet, J., Plassat, JL. et al. A yeast activity can substitute for the HeLa cell TATA box factor.Nature 334, 77–80 (1988). https://doi.org/10.1038/334077a0

Download citation

This article is cited by