A yeast activity can substitute for the HeLa cell TATA box factor (original) (raw)
- Letter
- Published: 07 July 1988
- Janine Huet2,
- Jean-Luc Plassat1,
- André Sentenac2,
- Jean-Marc Egly1 &
- …
- Pierre Chambon1,3
Nature volume 334, pages 77–80 (1988)Cite this article
- 246 Accesses
- 214 Citations
- 3 Altmetric
- Metrics details
Abstract
Most class B (II) promoter regions from higher eukaryotes contain the TATA box and upstream and enhancer elements1. Both the upstream and enhancer elements and their cognate factors have regulatory functions, whereas the TATA sequence interacts with the TATA box factor BTF1 to position RNA polymerase B and its ancillary initiation factors (STF, BTF2 and BTF3) to direct the initiation of transcription ∼30 base pairs downstream2. In many respects, class B promoter regions from the unicellular eukaryote Saccharomyces cerevisiae are similarly organized, containing upstream activating sequences that bear many similarities to enhancers3,4. Although they are essential for initiation, the yeast TATA sequences are located at variable distances and further from the start sites (40–120 base pairs), whose locations are primarily determined by an initiator element4. The basic molecular mechanisms that control initiation of transcription are known to be conserved from yeast to man: the yeast transcriptional _trans_-activator GAL4 can activate a minimal TATA box-containing promoter in human HeLa cells, and a human inducible enhancer factor, the oestrogen receptor, can activate a similar minimal promoter in yeast5–8. This striking evolutionary conservation prompted us to look for the presence in yeast of an activity that could possibly substitute for the human TATA box factor. We report here the existence of such an activity in yeast extracts.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Wasylyk, B. CRC Crit. Rev. Biochem. 23, (in the press).
- Zheng, X. M., Monocollin, V., Egly, J. M. & Chambon, P. Cell 50, 361–368 (1987).
Article CAS Google Scholar - Guarente, L. A. Rev. Genet. 21, 425–452 (1987).
Article CAS Google Scholar - Struhl, K. Cell 49, 295–297 (1987).
Article CAS Google Scholar - Webster, N., Jin, S. R., Green, S., Hollis, M. & Chambon, P. Cell 52, 169–178 (1988).
Article CAS Google Scholar - Kakidani, H. & Ptashne, M. Cell 52, 161–167 (1988).
Article CAS Google Scholar - Metzger, D., White, J. & Chambon, P. Nature (in the press).
- Guarente, L. Cell 52, 303–305 (1988).
Article CAS Google Scholar - Miyamoto, N. G. et al. Nucleic Acids Res. 12, 8779–8799 (1984).
Article CAS Google Scholar - Dezélée, S., Wyers, F., Sentenac, A. & Fromageot, P. Eur. J. Biochem. 65, 543–552 (1976).
Article Google Scholar - Moncollin, V., Miyamoto, N. G., Zheng, X. M. & Egly, J. M. EMBO J. 5, 2577–2584 (1986).
Article CAS Google Scholar - Davison, B. L., Egly, J. M., Mulvihill, E. R. & Chambon, P. Nature 301, 680–686 (1983).
Article ADS CAS Google Scholar - McNeil, J. B. & Smith, M. J. molec. Biol. 187, 363–378 (1986).
Article CAS Google Scholar - Fire, A., Samuels, M. & Sharp, P. A. J. biol. Chem. 259, 2509–2516 (1984).
CAS Google Scholar - Reinberg, D., Horikoshi, M. & Roeder, R. G. J. biol. Chem. 262, 3322–3330 (1987).
CAS Google Scholar - Reinberg, D. & Roeder, R. G. J. biol. Chem. 262, 3310–3321 (1987).
CAS Google Scholar - Huet, J., Sentenac, A. & Fromageot, P. J. biol. Chem. 257, 2613–2618 (1982).
CAS PubMed Google Scholar - Allison, L. A., Wong, J. K. C., Fitzpatrick, V. D., Moyle, M. & Ingles, C. J. Molec. cell. Biol. 8, 321–329 (1988).
Article CAS Google Scholar - Bartolomei, M. S., Halden, N. F., Ruta Cullen, C. & Corden, J. L. Molec. cell. Biol. 8, 330–339 (1988).
Article CAS Google Scholar - Biggs, J., Searles, L. L. & Greenleaf, A. L. Cell 42, 611–621 (1985).
Article CAS Google Scholar - Takahashi, K. et al. Nature 319, 121–126 (1986).
Article ADS CAS Google Scholar - Sawadogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).
Article CAS Google Scholar - Chodosh, L. A. et al. Cell 53, 25–35 (1988).
Article CAS Google Scholar - Wasylyk, C. & Wasylyk, B. EMBO J. 5, 553–560 (1986).
Article CAS Google Scholar - Moran, L. et al. Cell 17, 1–8 (1979).
Article CAS Google Scholar
Author information
Authors and Affiliations
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologic Moléculaire et de Génie Génétique de 1'INSERM, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg Cédex, France
Bruno Cavallini, Jean-Luc Plassat, Jean-Marc Egly & Pierre Chambon - Département de Biologic, Service de Biochimie, Centre d'Etudes Nucléates de Saclay, 91191, Gif-Sur-Yvette Cédex, France
Janine Huet & André Sentenac - To whom correspondence should be addressed,
Pierre Chambon
Authors
- Bruno Cavallini
You can also search for this author inPubMed Google Scholar - Janine Huet
You can also search for this author inPubMed Google Scholar - Jean-Luc Plassat
You can also search for this author inPubMed Google Scholar - André Sentenac
You can also search for this author inPubMed Google Scholar - Jean-Marc Egly
You can also search for this author inPubMed Google Scholar - Pierre Chambon
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Cavallini, B., Huet, J., Plassat, JL. et al. A yeast activity can substitute for the HeLa cell TATA box factor.Nature 334, 77–80 (1988). https://doi.org/10.1038/334077a0
- Received: 06 April 1988
- Accepted: 16 May 1988
- Issue Date: 07 July 1988
- DOI: https://doi.org/10.1038/334077a0