Inhibition of NF-κB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis (original) (raw)
References
Nüsslein-Volhard, C., Lohs-Schardin, M., Sander, K. & Cremer, C. Adorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature283, 474–476 (1980). ArticleADSPubMed Google Scholar
Hamburger, V. & Hamilton, H. L. Aseries of normal stages in the development of the chick embryo. J.Exp. Morphol.88, 49–92 (1951). ArticleCAS Google Scholar
Summerbell, D. Aquantitative analysis of the effect of the excision of the AER from the chick limb bud. J. Embryol. Exp. Morphol.32, 651–660 (1974). CASPubMed Google Scholar
Fallon, J. F.et al. FGF-2: apical ectodermal ridge growth signal for chick limb bud development. Science264, 104–107 (1994). ArticleADSCASPubMed Google Scholar
Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell75, 579–587 (1993). ArticleCASPubMed Google Scholar
Vogel, A., Rodriguez, C. & Izpisua-Belmonte, J. C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development122, 1737–1750 (1996). CASPubMed Google Scholar
Crossley, P. H., Minowada, G., MacArthur, C. A. & Martin, G. R. Roles for FGF8 in the induction, initiation and maintenance of chick limb development. Cell84, 127–136 (1996). ArticleCASPubMed Google Scholar
Inoue, J.-i.et al. Direct association of pp40/IκBβ with rel/NF-κB transcription factors: role of ankyrin repeats in the inhibition of DNA binding activity. Proc. Natl Acad. Sci. USA89, 4333–4337 (1992). ArticleADSCASPubMedPubMed Central Google Scholar
Brockman, J. A.et al. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol.15, 2809–2818 (1995). ArticleCASPubMedPubMed Central Google Scholar
Treanckner, E. B.-M.et al. Phosphorylation of human IκB-α on serines 32 and 36 controls IκB-α proteolysis and NF-κB activation in response to diverse stimuli. EMBO J.14, 2876–2883 (1995). Article Google Scholar
Grumont, R. J., Richardson, I. B., Gaff, C. & Berondakis, S. Rel/NF-κB nuclear complexes that bind κB sites in the murine c-rel promoter are required for constitutive c-rel transcription in B cells. Cell Growth Differ.4, 731–743 (1993). CASPubMed Google Scholar
Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A. & Tabin, C. Sonic hedgehog and FGF-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell79, 993–1003 (1994). ArticleCASPubMed Google Scholar
Niswander, L., Jeffrey, S., Martin, G. R. & Tickle, C. Apositive feedback loop coordinates growth and patterning in the vertebrate limb. Nature371, 609–612 (1994). ArticleADSCASPubMed Google Scholar
Jiang, J., Kosman, D., Ip, Y. T. & Levine, M. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev.5, 1881–1891 (1991). ArticleCASPubMed Google Scholar
Pan, D., Huang, J.-D. & Courey, A. J. Functional analysis of the Drosophila twist promoter reveals a dorsal -binding ventral activator region. Genes Dev.5, 1892–1901 (1991). ArticleCASPubMed Google Scholar
Huang, J. D., Schwyter, D. H., Shirokawa, J. M. & Courey, A. J. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev.7, 694–704 (1993). ArticleCASPubMed Google Scholar
Schwyter, D. H., Huang, J. D., Dubnicoff, T. & Courey, A. J. The decapentaplegic promoter region plays an integral role in the spatial control of transcription. Mol. Cell. Biol.15, 3960–3968 (1995). ArticleCASPubMedPubMed Central Google Scholar
Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev.9, 2105–2116 (1995). ArticleCASPubMed Google Scholar
Yokouchi, Y.et al. BMP-2/-4 mediate programmed cell death in chicken limb buds. Development122, 3725–3734 (1996). CASPubMed Google Scholar
Duprez, D.et al. Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech. Dev.57, 145–157 (1996). ArticleCASPubMed Google Scholar
Saunders, J. W. Jr & Gasseling, M. T. in Epithelial-Mesenchymal Interaction(eds Fleischmayer, R. & Billingham, R. E.) 78–97 (Williams and Wilkins, Boston, (1968). Google Scholar
Ros, M., Lyons, G. & Fallon, J. Spatial and temporal analysis of homeobox genes expressed in chick limb buds by whole mount in situ hybridization. Prog. Clin. Biol. Res.383A, 79–87 (1993). CASPubMed Google Scholar
Echelard, Y.et al. Sonic hedgehog, a member of a family of putative signalling molecules, is implicated in the regulation of CNS parity. Cell75, 1417–1430 (1993). ArticleCASPubMed Google Scholar
Winnier, G. E., Hargett, L. & Hogan, B. L. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev.11, 926–940 (1997). ArticleCASPubMed Google Scholar
Wall, N. A. & Hogan, B. L. Expression of bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein-7 (BMP-7), fibroblast growth factor-8 (FGF-8) and sonic hedgehog (SHH) during branchial arch development in the chick. Mech. Dev.53, 383–392 (1995). ArticleCASPubMed Google Scholar
Hughes, S. H., Greenhouse, J. J., Petropoulos, C. J. & Sutrave, P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virol.61, 3004–3012 (1987). CASPubMedPubMed Central Google Scholar
Morgan, B. A. & Fekete, D. M. Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol.51, 185–218 (1996). ArticleCASPubMed Google Scholar
Becker, T. C.et al. Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol.43, 161–176 (1994). ArticleCASPubMed Google Scholar