Inhibition of NF-κB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis (original) (raw)

References

  1. Nüsslein-Volhard, C., Lohs-Schardin, M., Sander, K. & Cremer, C. Adorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283, 474–476 (1980).
    Article ADS PubMed Google Scholar
  2. Hamburger, V. & Hamilton, H. L. Aseries of normal stages in the development of the chick embryo. J.Exp. Morphol. 88, 49–92 (1951).
    Article CAS Google Scholar
  3. Summerbell, D. Aquantitative analysis of the effect of the excision of the AER from the chick limb bud. J. Embryol. Exp. Morphol. 32, 651–660 (1974).
    CAS PubMed Google Scholar
  4. Fallon, J. F.et al. FGF-2: apical ectodermal ridge growth signal for chick limb bud development. Science 264, 104–107 (1994).
    Article ADS CAS PubMed Google Scholar
  5. Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587 (1993).
    Article CAS PubMed Google Scholar
  6. Vogel, A., Rodriguez, C. & Izpisua-Belmonte, J. C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).
    CAS PubMed Google Scholar
  7. Crossley, P. H., Minowada, G., MacArthur, C. A. & Martin, G. R. Roles for FGF8 in the induction, initiation and maintenance of chick limb development. Cell 84, 127–136 (1996).
    Article CAS PubMed Google Scholar
  8. Inoue, J.-i.et al. Direct association of pp40/IκBβ with rel/NF-κB transcription factors: role of ankyrin repeats in the inhibition of DNA binding activity. Proc. Natl Acad. Sci. USA 89, 4333–4337 (1992).
    Article ADS CAS PubMed PubMed Central Google Scholar
  9. Brockman, J. A.et al. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15, 2809–2818 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  10. Treanckner, E. B.-M.et al. Phosphorylation of human IκB-α on serines 32 and 36 controls IκB-α proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14, 2876–2883 (1995).
    Article Google Scholar
  11. Grumont, R. J., Richardson, I. B., Gaff, C. & Berondakis, S. Rel/NF-κB nuclear complexes that bind κB sites in the murine c-rel promoter are required for constitutive c-rel transcription in B cells. Cell Growth Differ. 4, 731–743 (1993).
    CAS PubMed Google Scholar
  12. Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A. & Tabin, C. Sonic hedgehog and FGF-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).
    Article CAS PubMed Google Scholar
  13. Niswander, L., Jeffrey, S., Martin, G. R. & Tickle, C. Apositive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).
    Article ADS CAS PubMed Google Scholar
  14. Jiang, J., Kosman, D., Ip, Y. T. & Levine, M. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881–1891 (1991).
    Article CAS PubMed Google Scholar
  15. Pan, D., Huang, J.-D. & Courey, A. J. Functional analysis of the Drosophila twist promoter reveals a dorsal -binding ventral activator region. Genes Dev. 5, 1892–1901 (1991).
    Article CAS PubMed Google Scholar
  16. Huang, J. D., Schwyter, D. H., Shirokawa, J. M. & Courey, A. J. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev. 7, 694–704 (1993).
    Article CAS PubMed Google Scholar
  17. Schwyter, D. H., Huang, J. D., Dubnicoff, T. & Courey, A. J. The decapentaplegic promoter region plays an integral role in the spatial control of transcription. Mol. Cell. Biol. 15, 3960–3968 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  18. Gitelman, I. Twist protein in mouse embryogenesis. Dev. Biol. 189, 205–214 (1997).
    Article CAS PubMed Google Scholar
  19. Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).
    Article CAS PubMed Google Scholar
  20. Yokouchi, Y.et al. BMP-2/-4 mediate programmed cell death in chicken limb buds. Development 122, 3725–3734 (1996).
    CAS PubMed Google Scholar
  21. Duprez, D.et al. Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech. Dev. 57, 145–157 (1996).
    Article CAS PubMed Google Scholar
  22. Saunders, J. W. Jr & Gasseling, M. T. in Epithelial-Mesenchymal Interaction(eds Fleischmayer, R. & Billingham, R. E.) 78–97 (Williams and Wilkins, Boston, (1968).
    Google Scholar
  23. Ros, M., Lyons, G. & Fallon, J. Spatial and temporal analysis of homeobox genes expressed in chick limb buds by whole mount in situ hybridization. Prog. Clin. Biol. Res. 383A, 79–87 (1993).
    CAS PubMed Google Scholar
  24. Echelard, Y.et al. Sonic hedgehog, a member of a family of putative signalling molecules, is implicated in the regulation of CNS parity. Cell 75, 1417–1430 (1993).
    Article CAS PubMed Google Scholar
  25. Winnier, G. E., Hargett, L. & Hogan, B. L. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev. 11, 926–940 (1997).
    Article CAS PubMed Google Scholar
  26. Wall, N. A. & Hogan, B. L. Expression of bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein-7 (BMP-7), fibroblast growth factor-8 (FGF-8) and sonic hedgehog (SHH) during branchial arch development in the chick. Mech. Dev. 53, 383–392 (1995).
    Article CAS PubMed Google Scholar
  27. Hughes, S. H., Greenhouse, J. J., Petropoulos, C. J. & Sutrave, P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virol. 61, 3004–3012 (1987).
    CAS PubMed PubMed Central Google Scholar
  28. Morgan, B. A. & Fekete, D. M. Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol. 51, 185–218 (1996).
    Article CAS PubMed Google Scholar
  29. Becker, T. C.et al. Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol. 43, 161–176 (1994).
    Article CAS PubMed Google Scholar

Download references