The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange (original) (raw)
References
Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem.60, 653–688 (1991). ArticleCAS Google Scholar
Barber, D. L., McGuire, M. E. & Ganz, M. B. β-Adrenergic and somatostatin receptors regulate Na–H exchange independent of cAMP. J. Biol. Chem.264, 21038–21042 (1989). CASPubMed Google Scholar
Ganz, M. B., Pachter, J. A. & Barber, D. L. Multiple receptors coupled to adenylate cyclase regulate Na–H exchange independent of cAMP. J. Biol. Chem.265, 8989–8992 (1990). CASPubMed Google Scholar
Barber, D. L. & Ganz, M. B. Guanine nucleotides regulate β-adrenergic activation of Na–H exchange independently of receptor coupling to Gs. J. Biol. Chem.267, 20607–20612 (1992). CASPubMed Google Scholar
Barber, D. L., Ganz, M. B., Bongiorno, P. B. & Strader, C. D. Mutant constructs of the β-adrenergic receptor that are uncoupled from adenylyl cyclase retain functional activation of Na–H exchange. Mol. Pharmacol.41, 1056–1060 (1992). CASPubMed Google Scholar
Bellow-Reuss, E. Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am. J. Physiol.238, F347–F352 (1980). Google Scholar
Weinmann, E. J., Sansom, S. C., Knight, T. F. & Senekjian, H. O. Alpha and beta adrenergic agonists stimulate water absorption in the rat proximal tubule. J. Membrane Biol.69, 107–111 (1982). Article Google Scholar
Weinman, E. J., Steplock, D., Wang, Y. & Shenolikar, S. Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na+–H+ exchanger. J. Clin. Invest.95, 2143–2149 (1995). ArticleCAS Google Scholar
Reczek, D., Berryman, M. & Bretscher, A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol.139, 169–179 (1997). ArticleCAS Google Scholar
Weinman, E. J., Steplock, D. & Shenolikar, S. cAMP-mediated inhibition of the renal brush border membrane Na+–H+ exchanger requires a dissociable protein cofactor. J. Clin. Invest.92, 1781–1786 (1993). ArticleCAS Google Scholar
Sheng, M. PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron17, 575–578 (1996). ArticleCAS Google Scholar
Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science269, 1737–1740 (1995). ArticleADSCAS Google Scholar
Songyang, Z.et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science275, 73–77 (1997). ArticleCAS Google Scholar
Yun, C. H. C.et al. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc. Natl Acad. Sci. USA94, 3010–3015 (1997). ArticleADSCAS Google Scholar
Cabado, A. G.et al. Distinct structural domains confer cAMP sensitivity and ATP dependence to the Na+/H+ exchanger NHE3 isoform. J. Biol. Chem.271, 3590–3599 (1996). ArticleCAS Google Scholar
Kurashima, K.et al. Identification of sites required for down-regulation of Na+/H+ exchanger NHE3 activity by cAMP-dependent protein kinase. Phosphorylation-dependent and -independent mechanisms. J. Biol. Chem.272, 28672–28675 (1997). ArticleCAS Google Scholar
Weinman, E. J. & Shenolikar, S. Regulation of the renal brush border membrane Na+/H+ exchanger. Annu. Rev. Physiol.55, 289–304 (1993). ArticleCAS Google Scholar
Noel, J. & Pouyssegur, J. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+/H+ exchanger isoforms. Am. J. Physiol.268, C283–C296 (1995). ArticleCAS Google Scholar
Orlowski, J. & Grinstein, S. Na+/H+ exchangers of mammalian cells. J. Biol. Chem.272, 22373–22376 (1997). ArticleCAS Google Scholar
Kahn, A. M., Dolson, G. M., Hise, M. K., Bennett, S. C. & Weinman, E. J. Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles. Am. J. Physiol.248, F212–F218 (1985). CASPubMed Google Scholar
Dolson, G. M., Hise, M. K. & Weinman, E. J. Relationship among parathyroid hormone, cAMP and calcium in proximal tubule sodium transport. Am. J. Physiol.249, F409–F416 (1985). ArticleCAS Google Scholar
Weinman, E. J., Shenolikar, S. & Kahn, A. M. cAMP-associated inhibition of Na+–H+ exchanger in rabbit kidney brush-border membranes. Am. J. Physiol.252, F19–F25 (1987). CASPubMed Google Scholar
Agus, Z. S., Puschett, J. B., Senesky, D. & Goldberg, M. Mode of action of parathyroid hormone and cyclic adenosine 3′–5′ monophosphate on renal-tubular phosphate reabsorption in the dog. J. Clin. Invest.50, 617–626 (1971). ArticleCAS Google Scholar
Ferguson, S. S. G., Barak, L. S., Zhang, J. & Caron, M. G. G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can. J. Physiol. Pharmacol.74, 1095–1110 (1996). ArticleCAS Google Scholar
Strader, C. D.et al. The carboxyl terminus of the hamster β-adrenergic receptor expressed in mouse L cells is not required for receptor sequestration. Cell49, 855–863 (1987). ArticleCAS Google Scholar
Bouvier, M.et al. Removal of phosphorylation sites from the β2-adrenergic receptor delays the onset of agonist-promoted desensitization. Nature333, 370–373 (1988). ArticleADSCAS Google Scholar
Cheung, A. H., Sigal, I. S., Dixon, R. A. F. & Strader, C. D. Agonist-promoted sequestration of the β2-adrenergic receptor requires regions involved in functional coupling to Gs. Mol. Pharmacol.35, 132–138 (1989). CASPubMed Google Scholar
Opperman, M.et al. Monoclonal antibodies reveal receptor specificity among G protein-coupled receptor kinases. Proc. Natl Acad. Sci. USA93, 7649–7654 (1996). ArticleADS Google Scholar
Barak, L. S., Ferguson, S. S. G., Zhang, J. & Caron, M. G. Aβ-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J. Biol. Chem.272, 27497–27500 (1997). ArticleCAS Google Scholar
Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. Amutation-induced activated state of the β2-adrenergic receptor: extending the ternary complex model. J. Biol. Chem.268, 4625–4636 (1993). CASPubMed Google Scholar