Activation in vitro of sequence-specific DNA binding by a human regulatory factor (original) (raw)

Nature volume 335, pages 372–375 (1988)Cite this article

An Erratum to this article was published on 10 November 1988

Abstract

The human heat-shock factor (HSF) regulates heat-shock genes in response to elevated temperature1–6. When human cells are heated to 43 °C, HSF is modified post-translationally from a form that does not bind DNA to a form that binds to a specific sequence (the heat-shock element, HSE7,8) found upstream of heat-shock genes6. To investigate the transduction of the heat signal to HSF, and more generally, how mammalian cells respond at the molecular level to environmental stimuli, we have developed a cell-free system that exhibits heat-induced activation of human HSF in vitro. Comparison of HSF activation in vitro and in intact cells suggests that the response of human cells to heat shock involves at least two steps. First, an ATP-independent, heat-induced alteration of HSF allows it to bind the HSE; the temperature at which activation occurs in vitro implies that a human factor directly senses temperature. Second, HSF is phosphorylated. It is possible that similar multi-step activation mechanisms play a role in the response of eukaryotic cells to a variety of environmental stimuli, and that these mechanisms evolved to increase the range and flexibility of the response.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Ritossa, F. M. Experimenlia 18, 571–572 (1962).
    Article CAS Google Scholar
  2. Nover, L. Heal Shock Response of Eukaryolic Cells (Springer, Berlin, 1984).
    Google Scholar
  3. Craig, E. A. CRC Crit. Rev. Biochem. 18, 239–280 (1985).
    Article CAS Google Scholar
  4. Pelham, H. R. B. Trends Genet. 1, 31–35 (1985).
    Article CAS Google Scholar
  5. Lindquist, S. A. Rev. Biochem. 55, 1151–1191 (1986).
    Article CAS Google Scholar
  6. Kingston, R. E., Schuetz, T. J. & Larin, Z. Molec. cell. Biol. 7, 1530–1534 (1987).
    Article CAS Google Scholar
  7. Pelham, H. R. B. & Bienz, M. EMBO J. 1, 1473–1477 (1982).
    Article CAS Google Scholar
  8. Mirault, M.-E., Southgate, R. & Delwart, E. EMBO J. 1, 1279–1285 (1982).
    Article CAS Google Scholar
  9. Yamamoto, K. R. A. Rev. Genet. 19, 209–252 (1985).
    Article CAS Google Scholar
  10. Sen, R. & Baltimore, D. Cell 47, 921–928 (1986).
    Article CAS Google Scholar
  11. Prywes, R. & Roeder, R. G. Cell 47, 777–784 (1986).
    Article CAS Google Scholar
  12. Hayes, T. E., Kitchen, A. M. & Cochran, B. H. Proc. nat. Acad. Sci. U.S.A. 84, 1272–1276 (1987).
    Article ADS CAS Google Scholar
  13. Zimarino, V. & Wu, C. Nature 327, 727–730 (1987).
    Article ADS CAS Google Scholar
  14. Seguin, C. & Hamer, D. H. Science 235, 1383–1387 (1987).
    Article ADS CAS Google Scholar
  15. Baeuerle, P. A. & Baltimore, D. Cell 53, 211–217 (1988).
    Article CAS Google Scholar
  16. Sorger, P. K., Lewis, M. J. & Pelham, H. R. B. Nature 329, 81–84 (1987).
    Article ADS CAS Google Scholar
  17. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1589 (1983).
    Article CAS Google Scholar
  18. Fried, M. & Crothcrs, D. M. Nucleic Acids Res. 9, 6505–6525 (1981).
    Article CAS Google Scholar
  19. Siebenlist, U. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 77, 122–126 (1980).
    Article ADS CAS Google Scholar
  20. Gilman, M. Z., Wilson, R. N. & Weinberg, R. A. Molec. cell. Biol. 6, 4305–4316 (1986).
    Article CAS Google Scholar
  21. Anantham, J., Goldberg, A. L. & Voellmy, R. Science 232, 522–524 (1986).
    Article ADS Google Scholar
  22. Finley, D., Ciechanover, A. & Varshavsky, A. Cell 37, 43–55 (1984).
    Article CAS Google Scholar
  23. Golf, S. A. & Goldberg, A. L. Cell 41, 587–595 (1985).
    Article Google Scholar
  24. Munro, S. & Pelham, H. Nature 317, 477–478 (1985).
    Article ADS CAS Google Scholar
  25. Wu, C. et al. Science 238, 1247–1253 (1987).
    Article ADS CAS Google Scholar
  26. Verjee, Z. H. M. Eur. J. Biochem. 9, 439–444 (1969).
    Article CAS Google Scholar
  27. Beckwith, J. & Zipser, D. The lactose operon (Cold Spring Harbor, New York, 1970).
    Google Scholar
  28. Wurm, F. M., Gwinn, K. A. & Kingston, R. E. Proc. natn. Acad. Sci. U.S.A. 83, 5415–5418 (1986).
    Article ADS Google Scholar
  29. Holmgren, R., Livak, K., Morimoto, R., Freund, R. & Meselson, M. Cell 18, 1359–1370 (1979).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Genetics, Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Wellman 10, Boston, Massachusetts, 02114, USA
    Jeffrey S. Larson, Thomas J. Schuetz & Robert E. Kingston

Authors

  1. Jeffrey S. Larson
    You can also search for this author inPubMed Google Scholar
  2. Thomas J. Schuetz
    You can also search for this author inPubMed Google Scholar
  3. Robert E. Kingston
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Larson, J., Schuetz, T. & Kingston, R. Activation in vitro of sequence-specific DNA binding by a human regulatory factor.Nature 335, 372–375 (1988). https://doi.org/10.1038/335372a0

Download citation

This article is cited by