B–cell memory is short-lived in the absence of antigen (original) (raw)

Nature volume 336, pages 70–73 (1988)Cite this article

Abstract

Primary encounter with antigen stimulates specific B cells not only to differentiate into cells that produce antibody at a high rate (plasma cells), but also to give rise to populations of memory cells. These cells have many characteristics that differ from virgin B cells, including their lifespan1. When re-exposed to antigen, memory cells generate secondary IgG responses that are enhanced in rate, titre and affinity. At present they are considered as small resting lymphocytes which survive for long periods in a quiescent state between each antigen encounter2. However, the fact that an individual may continue to make an antibody response for many months following a single injection of antigen3,4 is often overlooked. This continued antibody production is probably due to repeated stimulation of antigen-specific B cells and raises the question of whether memory B-cell clones require antigen for their maintenance. Here we show that they do, and that following transfer, in the absence of antigen, memory B-cell populations are lost from the adoptive host after 10–12 weeks.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

Memory B cells

Article 03 July 2023

References

  1. Strober, S. Transplant Rev. 24, 84–112 (1975).
    CAS PubMed Google Scholar
  2. Hood, L. E., Weissman, I. L., Woods, W. B. & Wilson, J. H. in Immunology, 2nd edn, 11 (Benjamin/Cummings, Melo Park, California, 1984).
    Google Scholar
  3. Gray, D., MacLennan, I. C. M. & Lane, P. J. L. Eur. J. Immun. 16, 641–648 (1986).
    Article CAS Google Scholar
  4. Tew, J. G., Phipps, R. P. & Mandel, T. E. Immunol. Rev. 53, 175–201 (1980).
    Article CAS Google Scholar
  5. MacLennan, I. C. M. & Gray, D. Immunol. Rev. 91, 63–85 (1986).
    Article Google Scholar
  6. Askonas, B. A. & Williamson, A. R. Eur. J. Immun. 2, 487–493 (1972).
    Article CAS Google Scholar
  7. Lane, P. J. L., Gray, D., Oldfield, S. & MacLennan, I. C. M. Eur. J. Immun. 16, 1569–1575 (1986).
    Article CAS Google Scholar
  8. Gray, D. Immunology 65, 73–79 (1988).
    CAS PubMed PubMed Central Google Scholar
  9. Gray, D. J. exp. Med. 167, 805–816 (1988).
    Article CAS Google Scholar
  10. Askonas, B. A., Cunningham, A. J., Kreth, H. W., Roelants, G. E. & Williamson, A. R. Eur. J. Immun. 2, 494–498 (1972).
    Article CAS Google Scholar
  11. Feldbush, T. L. Cell Immun. 8, 435–444 (1973).
    Article CAS Google Scholar
  12. Celada, F. J. exp. Med. 125, 199–211 (1967).
    Article CAS Google Scholar
  13. Mandel, T. E., Phipps, R. P., Abbot, A. & Tew, J. G. Immunol. Rev. 53, 29–57 (1980).
    Article CAS Google Scholar
  14. Tew, J. G. & Mandel, T. E. J. Immun. 120, 1063–1069 (1978).
    CAS PubMed Google Scholar
  15. Tew, J. G. & Mandel, T. E. Immunology 37, 69–76 (1979).
    CAS PubMed PubMed Central Google Scholar
  16. Mims, C. A. Pathogenesis of Infectious Disease 3rd edn, 132 (Academic, London, 1987).
    Google Scholar
  17. Frankel, L. D. & Bellanti, J. A. in The Immunology of Human Infection Part II (eds Nahamias, A. J. & O'Reilly, R. J.) 135 (Plenum, London, New York, 1982).
    Book Google Scholar
  18. Black, S. J., Tokuhisa, T., Herzenberg, L. A. & Herzenberg, L. A. Eur. J. Immun. 10, 846–851 (1980).
    Article CAS Google Scholar
  19. Zan-Bar, I., Strober, S. & Vitetta, E. S. J. Immun. 123, 925–930 (1979).
    CAS PubMed Google Scholar
  20. Hayakawa, K., Ishii, R., Yamasaki, K., Kishimoto, T. & Hardy, R. R. Proc. natn. Acad. Sci. U.S.A. 84, 1379–1383 (1987).
    Article ADS CAS Google Scholar
  21. Lui, Y.-J., Oldfield, S. & MacLennan, I. C. M. Eur. J. Immun. 18, 355–362 (1988).
    Article Google Scholar
  22. Kumararatne, D. S. & MacLennan, I. C. M. Eur. J. Immun. 11, 865–869 (1981).
    Article CAS Google Scholar
  23. Ron, Y. & Sprent, J. J. Immun. 138, 2848–2856 (1987).
    CAS PubMed Google Scholar
  24. Hunt, S. V. & Fowler, M. H. Cell Tissue Kinet. 14, 445–464 (1981).
    CAS PubMed Google Scholar
  25. Gray, D., Chassoux, D., MacLennan, I. C. M. & Bazin, H. Clin. exp. Immun. 60, 78–86 (1985).
    CAS PubMed Google Scholar
  26. Mäkelä, O., Kaartinen, M., Pelkonen, J. L. T. & Karjalainen, K. J. exp. Med. 148, 1644–1660 (1978).
    Article Google Scholar
  27. Williams, A. F., Galfré, G. & Milstein, C. Cell 12, 663–637 (1977).
    Article CAS Google Scholar
  28. Dallman, M. J., Mason, D. W. & Webb, M. Eur. J. Immun. 12, 511–518 (1982).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Basel Institute for Immunology, Grenzacherstrasse 487, Postfach CH-4005, Basel, Switzerland
    David Gray & Helena Skarvall

Authors

  1. David Gray
    You can also search for this author inPubMed Google Scholar
  2. Helena Skarvall
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Gray, D., Skarvall, H. B–cell memory is short-lived in the absence of antigen.Nature 336, 70–73 (1988). https://doi.org/10.1038/336070a0

Download citation

This article is cited by