Mutation rates differ among regions of the mammalian genome (original) (raw)

Nature volume 337, pages 283–285 (1989)Cite this article

Abstract

In the traditional view of molecular evolution, the rate of point mutation is uniform over the genome of an organism and variation in the rate of nucleotide substitution among DNA regions reflects differential selective constraints1,2. Here we provide evidence for significant variation in mutation rate among regions in the mammalian genome. We show first that substitutions at silent (degenerate) sites in protein-coding genes in mammals seem to be effectively neutral (or nearly so) as they do not occur significantly less frequently than substitutions in pseudogenes. We then show that the rate of silent substitution varies among genes and is correlated with the base composition of genes and their flanking DNA. This implies that the variation in both silent substitution rate and base composition3 can be attributed to systematic differences in the rate and pattern of mutation over regions of the genome. We propose that the differences arise because mutation patterns vary with the timing of replication of different chromosomal regions in the germline. This hypothesis can account for both the origin of isochores in mammalian genomes4 and the observation5 that silent nucleotide substitutions in different mammalian genes do not have the same molecular clock.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).
    Book Google Scholar
  2. Sharp, P. M. & Li, W.-H. Molec. biol. Evol. 4, 222–230 (1987).
    CAS PubMed Google Scholar
  3. Aota, S. & Ikemura, T. Nucleic Acids Res. 14, 6345–6355 (1986).
    Article CAS Google Scholar
  4. Bernardi, G. et al. Science 228, 953–958 (1985).
    Article ADS CAS Google Scholar
  5. Li, W.-H., Tanimura, M. & Sharp, P. M. J. molec. Evol. 25, 330–342 (1987).
    Article ADS CAS Google Scholar
  6. Li, W.-H., Gojobori, T. & Nei, M. Nature 292, 237–239 (1981).
    Article ADS CAS Google Scholar
  7. Miyata, T. & Hayashida, H. Proc. natn. Acad. Sci. U.S.A. 78, 5739–5743 (1981).
    Article ADS CAS Google Scholar
  8. Fukasawa, K. M. et al. Genetics 115, 177–184 (1987).
    CAS PubMed PubMed Central Google Scholar
  9. Miyata, T. et al. J. molec. Evol. 19, 28–35 (1982).
    Article ADS CAS Google Scholar
  10. Filipski, J. J. theor. Biol. 134, 159–164 (1988).
    Article CAS Google Scholar
  11. Smithies, O., Engels, W. R., Devereux, J. R., Slightom, J. L. & Shen, S-h. Cell 26, 345–353 (1981).
    Article CAS Google Scholar
  12. Mouchiroud, D. & Gautier, C. Molec. biol. Evol. 5, 192–194 (1988).
    CAS PubMed Google Scholar
  13. Nadeau, J. H. & Taylor, B. A. Proc. natn. Acad. Sci. U.S.A. 81, 814–818 (1984).
    Article ADS CAS Google Scholar
  14. Friedberg, E. C. DNA Repair (Freeman, New York, 1985).
    Google Scholar
  15. Topal, M. D. & Fresco, J. R. Nature 263, 285–289 (1976).
    Article ADS CAS Google Scholar
  16. Holmquist, G. P. Am. J. hum. Genet. 40, 151–173 (1987).
    CAS PubMed PubMed Central Google Scholar
  17. Leeds, J. M., Slabaugh, M. B. & Mathews, C. K. Molec. cell Biol. 5, 3443–3450 (1985).
    Article CAS Google Scholar
  18. Kelly, T. & Stillman, B. (eds) Cancer Cells 6: Eukaryotic DNA Replication (Cold Spring Harbor Laboratory, New York, 1988).
  19. Fersht, A. R. & Knill-Jones, J. W. Proc. natn. Acad. Sci. U.S.A. 78, 4251–4255 (1981).
    Article ADS CAS Google Scholar
  20. Holmquist, G., Gray, M., Porter, T. & Jordan, J. Cell 31, 121–129 (1982).
    Article CAS Google Scholar
  21. Brown, E. H. et al. Molec cell. Biol. 7, 450–457 (1987).
    Article CAS Google Scholar
  22. Filipski, J. FEBS Lett. 217, 184–186 (1987).
    Article CAS Google Scholar
  23. Bohr, V. A., Phillips, D. H. & Hanawalt, P. C. Cancer Res. 47, 6426–6436 (1987).
    CAS PubMed Google Scholar
  24. Prelich, G. & Stillman, B. Cell 53, 117–126 (1988).
    Article CAS Google Scholar
  25. Bernardi, G. & Bernardi, G. J. molec. Evol. 24, 1–11 (1986).
    Article ADS CAS Google Scholar
  26. Gillespie, J. H. Genetics 113, 1077–1091 (1986).
    CAS PubMed PubMed Central Google Scholar
  27. Ikemura, T. Molec. biol Evol. 2, 13–34 (1985).
    CAS PubMed Google Scholar
  28. Hanai, R. & Wada, A. J. molec Evol. 27, 321–325 (1988).
    Article ADS CAS Google Scholar
  29. Nei, M. & Graur, D. Evol. Biol. 17, 73–118 (1984).
    Article Google Scholar
  30. Tajima, F. & Nei, M. Molec. biol. Evol. 1, 269–285 (1984).
    CAS PubMed Google Scholar

Download references

Author information

Author notes

  1. Wen-Hsiung Li: Center for Demographic and Population Genetics, University of Texas, PO Box 20334, Houston, Texas 77225, USA
  2. Paul M. Sharp: To whom correspondence should be addressed

Authors and Affiliations

  1. Department of Genetics, Trinity College, Dublin, 2, Ireland
    Kenneth H. Wolfe, Paul M. Sharp & Wen-Hsiung Li

Authors

  1. Kenneth H. Wolfe
    You can also search for this author inPubMed Google Scholar
  2. Paul M. Sharp
    You can also search for this author inPubMed Google Scholar
  3. Wen-Hsiung Li
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Wolfe, K., Sharp, P. & Li, WH. Mutation rates differ among regions of the mammalian genome.Nature 337, 283–285 (1989). https://doi.org/10.1038/337283a0

Download citation

This article is cited by