Formation of reverse rigor chevrons by myosin heads (original) (raw)

Nature volume 339, pages 481–483 (1989)Cite this article

Abstract

THE uniform angle and conformation of myosin subfragment 1 (S1) bound to actin filaments (F-actin) attest to the precise alignment and stereospecificity of the binding of these two contractile proteins1,2. Because actin filaments are polar3, myosin heads must swing or rotate about the head–tail junction in order to bind. Electron microscopy of isolated thick filaments4 and of myosin molecules5 suggests that the molecules are flexible, but myosin fragments and crossbridges have been reported not to interact with inappropriately oriented actin filaments6,7. Here we describe myofibrillar defects engendered by a site-directed mutation within the flight-muscle-specific actin gene of the fruitfly Drosophila. The mutation apparently retards sarcomere assembly: peripheral thick and thin filaments are misregistered and not incorporated into the Z-line. Therefore, a myosin filament encounters thin filaments with the 'wrong' polarity. We show that myosin heads tethered in a single thick filament can bind with opposite rigor crossbridge angles to flanking thin filaments, which are apparently of opposite polarities. Preservation of identical actomyosin interfaces requires that sets of heads originating from opposite sides of the thick filament swivel 180° relative to each other, implying that myosin crossbridges are as flexible as isolated molecules.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Amos, L. A., Huxley, H. E., Holmes, K. C., Goody, R. S. & Taylor, K. A. Nature 299, 467–469 (1982).
    Article ADS CAS Google Scholar
  2. Milligan, R. A. & Flicker, P. F. J. Cell. Biol. 105, 29–39 (1987).
    Article CAS Google Scholar
  3. Huxley, H. E. J. molec. Biol. 7, 2381–308 (1963).
    Article Google Scholar
  4. Knight, P. & Trinick, J. J. molec. Biol. 177, 461–482 (1984).
    Article CAS Google Scholar
  5. Winkelmann, D. A. & Lowey, S. J. molec. Biol. 188, 595–612 (1986).
    Article CAS Google Scholar
  6. Sheetz, M. & Spudich, J. Nature 303, 31–35 (1983).
    Article ADS CAS Google Scholar
  7. Trombitas, K. & Tigyi-Seges, A. Nature 309, 168–170 (1984).
    Article ADS CAS Google Scholar
  8. Fyrberg, E. A. Oxford Surv. Eukaryotic Genes 1, 61–86 (1984).
    CAS Google Scholar
  9. Ball, E. et al. Cell 51, 221–228 (1987).
    Article CAS Google Scholar
  10. Hiromi, Y., Okamoto, H., Gehring, W. J. & Hotta, Y. Cell 44, 293–301 (1986).
    Article CAS Google Scholar
  11. Okamoto, H. et al. EMBO J. 5, 589–596 (1986).
    Article CAS Google Scholar
  12. Reedy, M. K. & Reedy, M. C. J. molec. Biol. 185, 145–176 (1985).
    Article CAS Google Scholar
  13. Taylor, K. A., Reedy, M. C., Cordova, L. & Reedy, M. K. Nature 310, 285–291 (1984).
    Article ADS CAS Google Scholar
  14. Trombitas, K., Baatsen, P. & Pollack, G. J. ultrastruct. molec. Str. Res. 97, 39–49 (1986).
    Article Google Scholar
  15. Walker, M. & Trinick, J. J. molec. Biol. 192, 661–667 (1986).
    Article CAS Google Scholar
  16. Walker, M. & Trinick, J. J. Muscle Res. Cell Motil. 9, 359–366 (1988).
    Article CAS Google Scholar
  17. Mendelson, R. A., Morales, M. F. & Botts, J. Biochemistry 12, 2250–2255 (1973).
    Article CAS Google Scholar
  18. Thomas, D. D., Seidel, J. C., Hyde, J. S. & Gergely, J. Proc. natn. Acad. Sci. U.S.A. 72, 1729–1733 (1975).
    Article ADS CAS Google Scholar
  19. Spradling, A. C. & Rubin, G. M. Science 218, 341–347 (1982).
    Article ADS CAS Google Scholar
  20. Nakamaye, K. L. & Eckstein, F. Nucleic Acids Res. 14, 9679–9698.
  21. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–460 (1980).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
    Mary C. Reedy
  2. Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
    Clifford Beall & Eric Fyrberg

Authors

  1. Mary C. Reedy
  2. Clifford Beall
  3. Eric Fyrberg

Rights and permissions

About this article

Cite this article

Reedy, M., Beall, C. & Fyrberg, E. Formation of reverse rigor chevrons by myosin heads.Nature 339, 481–483 (1989). https://doi.org/10.1038/339481a0

Download citation

This article is cited by