Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution (original) (raw)

References

  1. Toyoshima, C., Sasabe, H. & Stokes, D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362, 469–471 (1993).
    Article ADS Google Scholar
  2. Dux, L. & Martonosi, A. Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J. Biol. Chem. 258, 2599–2603 (1983).
    CAS PubMed Google Scholar
  3. Taylor, K. A., Dux, L. & Martonosi, A. Three-dimensional reconstruction of negatively stained crystals of the Ca++-ATPase from muscle sarcoplasmic reticulum. J. Mol. Biol. 187, 417–427 (1986).
    Article CAS PubMed Google Scholar
  4. Stokes, D. L. & Lacapere, J.-J. Conformation of Ca2+-ATPase in two crystal forms: Effects of Ca2+, thapsigargin, AMP-PCP, and Cr-ATP on crystallization. J. Biol. Chem. 269, 11606–11613 (1994).
    CAS PubMed Google Scholar
  5. Hua, S., Malak, H., Lakowicz, J. R. & Inesi, G. Synthesis and interaction of fluorescent thapsigargin derivatives with the carcoplasmic reticulum ATPase membrane-bound region. Biochemistry 34, 5137–5142 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  6. Sagara, Y., Wade, J. B. & Inesi, G. Aconformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum ATPase with thapsigargin. J. Biol. Chem. 267, 1286–1292 (1992).
    CAS PubMed Google Scholar
  7. MacLennan, D. H., Brandl, C. J., Korczak, B. & Green, N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316, 696–700 (1985).
    Article ADS CAS PubMed Google Scholar
  8. Moller, J. V., Juul, B. & le Maire, M. Structural organization, ion transport, and energy transduction of ATPases. Biochim. Biophys. Acta 1286, 1–51 (1996).
    Article PubMed Google Scholar
  9. MacLennan, D. H., Rice, W. J. & Green, N. M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+ ATPases. J. Biol. Chem. 272, 28815–28818 (1997).
    Article CAS PubMed Google Scholar
  10. Gadsby, D. C., Rakowski, R. F. & De Weer, P. Extracellular access to the Na, K pump: Pathway similar to ion channel. Science 260, 100–103 (1993).
    Article ADS CAS PubMed Google Scholar
  11. Hilgemann, D. W. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science 263, 1429–1432 (1994).
    Article ADS CAS PubMed Google Scholar
  12. Stokes, D. L., Taylor, W. R. & Green, N. M. Structure, transmembrane topology and helix packing of P-type ion pumps. FEBS Lett. 346, 32–38 (1994).
    Article CAS PubMed Google Scholar
  13. Clarke, D. M., Loo, T. W., Inesi, G. & MacLennan, D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339, 476–478 (1989).
    Article ADS CAS PubMed Google Scholar
  14. Andersen, J. P. Dissection of the functional domains of the sarcoplasmic reticulum Ca2+-ATPase by site-directed mutagenesis. Biosci. Rep. 15, 243–261 (1995).
    Article CAS PubMed Google Scholar
  15. Rice, W. J. & MacLennan, D. H. Scanning mutagenesis reveals a similar pattern of mutation sensitivity in transmembrane sequences M4, M5, and M6, but not in M8, of the Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a). J. Biol. Chem. 271, 31412–31419 (1996).
    Article CAS PubMed Google Scholar
  16. Chen, L. et al. Short and long range functions of amino acids in the transmembrane region of the sarcoplasmic reticulum ATPase: a mutational study. J. Biol. Chem. 271, 10745–10752 (1996).
    Article CAS PubMed Google Scholar
  17. Rice, W. J. & MacLennan, D. H. Site-directed disulfide mapping of helices M4 and M6 in the Ca2+ binding domain of SERCA1a, the Ca2+ATPase of fast-twitch skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 272, 31412–31419 (1997).
    Article CAS PubMed Google Scholar
  18. Baldwin, J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  19. Green, N. M. in The Sodium Pump: Structure, Mechanisms, Hormonal Control and its Role in Disease (eds Bamberg, E. & Schoner, W.) 110–119 (Steinkopff, Darmstadt, 1994).
    Book Google Scholar
  20. Matthews, I., Sharma, R. P., Lee, A. G. & East, J. M. Transmembranous organization of (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum: evidence for lumenal location of residues 877–888. J. Biol. Chem. 265, 18737–18740 (1990).
    CAS PubMed Google Scholar
  21. Clarke, D. M., Loo, T. W. & MacLennan, D. H. The epitope for monoclonal antibody A20 (amino acids 870–890) is located on the luminal surface of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 265, 17405–17408 (1990).
    CAS PubMed Google Scholar
  22. Beroukhim, R. & Unwin, N. Distortion correction of tubular crystals: Improvements in the acetylcholine receptor structure. Ultramicroscopy 70, 57–81 (1997).
    Article CAS PubMed Google Scholar
  23. Tani, K., Sasabe, H. & Toyoshima, C. Aset of computer programs for determining defocus and astigmatism in electron images. Ultramicroscopy 65, 31–44 (1997).
    Article Google Scholar
  24. Toyoshima, C., Yonekura, K. & Sasabe, H. Contrast transfer for frozen-hydrated specimens: II. Amplitude contrast at very low frequencies. Ultramicroscopy 48, 165–176 (1993).
    Article Google Scholar
  25. Green, N. M. ATP-driven cation pumps: alignment of sequences. Biochem. Soc. Trans. 17, 970–972 (1989).
    CAS Google Scholar
  26. Guerini, D., Foletti, D., Vellani, F. & Carofoli, E. Mutation of conserved residues in transmembrane domains 4, 6, and 8 causes loss of Ca2+ transport by the plasma membrane Ca2+ pump. Biochemistry 35, 3290–3296 (1996).
    Article CAS PubMed Google Scholar

Download references