A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse (original) (raw)

Nature volume 339, pages 704–706 (1989)Cite this article

Abstract

COMPARED with the variety of neuromodulatory agents acting through second messenger systems, the number of fast neurotran-smitters which directly activate ion channels is limited. Thus, synaptic receptors that act as ligand-gated ion channels have been firmly established only for acetylcholine, glycine, GABA and glutamate, with the first three of these belonging to the same molecular superfamily1. Recently, however, a possible addition to this list has been suggested as a result of evidence implicating histamine as the neurotransmitter released by a variety of arthropod photoreceptors2–7. Neurotransmission at this synapse has been studied extensively, particularly in the fly8–12. The post-synaptic elements, large monopolar cells, respond to light with a rapid, chloride-mediated hyperpolarization8,13,14 that can be mimicked by the application of histamine3. In this report I document some basic properties of the histamine receptors present on large monopolar cells isolated from blowfly optic lobes. The receptor is a ligand-gated chloride channel showing properties consistent with its presumed role of mediating neurotransmission at the photoreceptor synapse.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Barnard, E. A., Darlinson, M. G. & Seeburg, P. Trends Neurosci. 10, 502–509 (1987).
    Article CAS Google Scholar
  2. Elias, M. S. & Evans, P. D. J. Neurochem. 41, 562–568 (1983).
    Article CAS Google Scholar
  3. Hardie, R. C. J. comp. Physiol. 161, 201–213 (1987).
    Article CAS Google Scholar
  4. Hardie, R. C. J. exp. Biol. 138, 221–241 (1988).
    CAS Google Scholar
  5. Simmons, P. J. & Hardie, R. C. J. exp. Biol. 138, 205–220 (1988).
    CAS Google Scholar
  6. Stuart A. E. & Callaway, J. C. Invest. Ophthalmol. Vis. Sci. 29, 223a (1988).
    Google Scholar
  7. Nässel, D. R., Holmqvist, M. H., Hardie, R. C., Hakånson, R. & Sundler, F. Cell Tissue Res. 253, 639–646 (1988).
    Article Google Scholar
  8. Laughlin, S. B. & Hardie, R. C. J. comp. Physiol. 128, 319–340 (1978).
    Article Google Scholar
  9. Laughlin, S. B. Trends Neurosci. 10, 478–483 (1987).
    Article Google Scholar
  10. Laughlin, S. B. Blakeslee, B. & Howard, J. Proc. R. Soc. Lond. B 231, 437–467 (1987).
    Article ADS CAS Google Scholar
  11. Shaw, S. R. J. exp. Biol. 112, 225–252 (1984).
    CAS PubMed Google Scholar
  12. Nicol, D. & Meinertzhagen, I. A. J. comp. Neurol. 207, 29–44 (1982).
    Article CAS Google Scholar
  13. Autrum, H., Zettler, F. & Järvilehto, M. Z. vergl. Physiol. 70, 414–424 (1970).
    Article Google Scholar
  14. Zettler, F. & Straka, H. J. exp Biol. 131, 435–438 (1988).
    Google Scholar
  15. Laughlin, S. B. & Osorio D. J. exp. Biol. (in the press).
  16. McClintock, T. S. Biol. Bull. 175, 307a (1988).
    Google Scholar
  17. Frizell, R. A. Trends Neurosci. 10, 190–193 (1987).
    Article Google Scholar
  18. Funder, J. W. News in Physiol. Sci. 2, 231–232 (1987).
    Google Scholar
  19. Magleby, K. L. & Stevens, C. F. J. Physiol. 223, 151–171 (1972).
    Article CAS Google Scholar
  20. Colquhoun, D. & Sakmann B. J. Physiol. 369, 501–557 (1985).
    Article CAS Google Scholar
  21. Sakmann, B., Patlak, J. & Neher E. Nature 286, 71–73 (1980).
    Article ADS CAS Google Scholar
  22. Pirvola, U., Tuomisto, L., Yamatodani, A. & Panula, P. J. comp. Neurol. 276, 514–526 (1988).
    Article CAS Google Scholar
  23. Battelle, B.-A. et al. Invest. Ophthalmol. Vis. Sci. 30, (in the press).
  24. Fenwick, E. M., Marty, A. & Neher, E. J. Physiol. 331, 577–597 (1985).
    Article Google Scholar
  25. Pinnock, R. D. & Sattelle, D. B. J. Neurosci. Meth. 20, 195–202 (1987).
    Article CAS Google Scholar
  26. Strausfeld, N. J. Z. Zellforsch. 121, 377–441 (1971).
    Article Google Scholar
  27. Boschek, B. Z. Zellforsch. 118, 369–409 (1971).
    Article CAS Google Scholar
  28. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. gen. Physiol. 391, 85–100 (1981).
    Article CAS Google Scholar
  29. Colquhoun, D. & Hawkes, A. G. in Single channel Recording (eds Sakmann, B. & Neher, E.) 135–175 (1983).
    Book Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Zoology, Cambridge University, Downing Street, Cambridge, CB2 3EJ, England, UK
    R. C. Hardie

Rights and permissions

About this article

Cite this article

Hardie, R. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse.Nature 339, 704–706 (1989). https://doi.org/10.1038/339704a0

Download citation

This article is cited by