Fibronectin inhibits the terminal differentiation of human keratinocytes (original) (raw)

Nature volume 340, pages 307–309 (1989)Cite this article

Abstract

IN the epidermis proliferation of keratinocytes is restricted to the basal layer, which is in contact with the basement membrane, and cells undergo terminal differentiation as they move upwards through the suprabasal layers. In stratified cultures of human keratinocytes, upward migration is a consequence, not a cause, of terminal differentiation1 and occurs because keratinocytes become less adhesive to their substratum and to one another2. Most keratinocytes can be induced to differentiate to completion by placing them in suspension in methylcellulose3: within 12 h DNA synthesis is irreversibly inhibited and by 24 h most cells express involucrin (ref 4; P. A. Hall, J.C.A. and F.M.W., unpublished observations). Here we report that when fibronectin is added to the methylcellulose, keratinocytes still withdraw from the cell cycle, but induction of involucrin expression is largely inhibited. The effect of fibronectin is concentration- and time-dependent and is mediated by a receptor of the integrin family5. These results provide an explanation for why overt terminal differentiation is normally restricted to suprabasal cells, whereas cell-cycle withdrawal occurs within the basal layer; they also have important implications for the mechanism of epidermal wound healing. Furthermore, our data show that the binding of an extracellular matrix protein to its receptor can regulate differentiated gene expression in the absence of changes in cell shape.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Watt, F. M. & Green, H. Nature 295, 434–436 (1982).
    Article ADS CAS Google Scholar
  2. Watt, F. M. J. Cell Biol. 98, 16–21 (1984).
    Article CAS Google Scholar
  3. Green, H. Cell 11, 405–416 (1977).
    Article CAS Google Scholar
  4. Watt, F. M., Jordan, P. W. & O'Neill, C. H. Proc. natn. Acad. Sci. U.S.A. 85, 5576–5580 (1988).
    Article ADS CAS Google Scholar
  5. Ruoslahti, E. A. Rev. Biochem. 57, 375–413 (1988).
    Article CAS Google Scholar
  6. Watt, F. M. J. Cell Sci. Suppl. 8, 313–326 (1987).
    Article CAS Google Scholar
  7. Fava, R. A. & McClure, O. B. J. cell Physiol. 131, 184–189 (1983).
    Article Google Scholar
  8. Anzano, M. A., Roberts, A. B. Smith, J. M., Sporn, M. B. & De Larco, J. E. Proc. natn. Acad. Sci. U.S.A. 80, 6264–6268 (1983).
    Article ADS CAS Google Scholar
  9. Potten, C. S. & Morris, R. J. J. Cell Sci. Suppl. 10, 45–62 (1988).
    Article CAS Google Scholar
  10. Pierschbacher, M. D. & Ruoslahti, E. Nature 309, 30–33 (1984).
    Article ADS CAS Google Scholar
  11. Hynes, R. O. Cell 48, 549–554 (1987).
    Article CAS Google Scholar
  12. Akiyama, S. K. & Yamada, K. M. J. biol. Chem. 260, 10402–10405 (1985).
    CAS PubMed Google Scholar
  13. Stenman, S. & Vaheri, A. J. exp. Med. 147, 1054–1064 (1978).
    Article CAS Google Scholar
  14. Grinnell, F., Toda, K-I. & Takashima, A. J. Cell Sci. Suppl. 8, 199–209 (1987).
    Article CAS Google Scholar
  15. Colvin, R. B. in Fibronectin (ed. Mosher, D. F.) 213–252 (Academic, New York, 1989).
    Book Google Scholar
  16. Pennypacker, J. P., Hassell, J. R., Yamada, K. M. & Pratt, R. M. Expl Cell Res. 121, 411–415 (1979).
    Article CAS Google Scholar
  17. Podleski, T. R., Greenberg, I., Schlessinger, J. & Yamada, K. M. Expl Cell Res. 122, 317–326 (1979).
    Article CAS Google Scholar
  18. West, C. M. et al. Cell 17, 491–501 (1979).
    Article CAS Google Scholar
  19. Spiegelman, B. M. & Ginty, C. A. Cell 35, 657–666 (1983).
    Article CAS Google Scholar
  20. Patel, V. P. & Lodlsh, H. F. J. Cell Biol. 105, 3105–3118 (1987).
    Article CAS Google Scholar
  21. Adams, J. C. & Watt, F. M. J. Cell Biol. 107, 1927–1938 (1988).
    Article CAS Google Scholar
  22. Read, J. & Watt, F. M. J. invest. Dermat. 90, 739–743 (1988).
    Article CAS Google Scholar
  23. Rupniak, H. T., Turner, D. M., Wood, E. J. & Cunliffe, W. J. J. invest. Dermat. 87, 164 (1986).
    Google Scholar
  24. Zardi, L. et al. Eur. J. Biochem. 146, 571–579 (1985).
    Article CAS Google Scholar
  25. Yamada, K. M. In Fibronectin (ed. Mosher, D. F.) 47–121 (Academic, New York, 1989).
    Book Google Scholar
  26. Dedhar, S., Argaves, W. R., Suzuki, S., Ruoslahti, E. & Pierschbacher, M. D. J. Cell Biol. 105, 1175–1182 (1987).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Keratinocyte Laboratory, Imperial Cancer Research Fund, PO Box 123, Lincoln's Inn Fields, London, WC2A 3PX, UK
    Josephine C. Adams & Fiona M. Watt

Authors

  1. Josephine C. Adams
  2. Fiona M. Watt

Rights and permissions

About this article

Cite this article

Adams, J., Watt, F. Fibronectin inhibits the terminal differentiation of human keratinocytes.Nature 340, 307–309 (1989). https://doi.org/10.1038/340307a0

Download citation

This article is cited by