Influence of nitrogen fertilization on methane uptake in temperate forest soils (original) (raw)

Nature volume 341, pages 314–316 (1989)Cite this article

Abstract

METHANE, a long-lived gas (8–10 years residence time), is important in the chemistry of the atmosphere and the Earth's radiation balance1–3. The tropospheric abundance of CH4 has been increasing by ˜1.1% yr–1 over the past decade4,5. The cause of this increase may be due to either increases in global sources or decreases in global sinks1,6,7. Although considerable research has focused on measuring CH4 emissions from major biological sources7,8, much less is known about the magnitude of, and factors controlling, biological sinks of CH4. The largest biological sinks for methane are microorganisms in aerobic soils7. Here we report a study of CH4 uptake by aerobic temperate-forest soils. We measured CH4consumption rates (up to 3.17 mg CH4–C m–1 day–1) that were higher than reported previously. Globally, soils of temperate and boreal forests may consume up to 9.3 Tg CH4–C yr–1. We also found that the CH4 uptake rates of these soils were decreased significantly by elevated soil moisture (14%) and nitrogen additions (33%), implying that nitrogen fertilization may reduce this CH4 sink.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Seller, W. in Current Perspectives in Microbial Ecology (eds Klug, M. J. & Reddy, C. A.) 468–477 (American Society for Microbiology, Washington, 1984).
    Google Scholar
  2. Mooney, H. A., Vitousek, P. M. & Matson, P. A. Science 238, 926–932 (1987).
    Article ADS CAS Google Scholar
  3. Blake, D. R. & Rowland, F. S. Science 239, 1129–1131 (1988).
    Article ADS CAS Google Scholar
  4. Bolle, H.-J., Seiler, W. & Bolin, B. in The Greenhouse Effect, Climatic Change and Ecosystems (eds Bolin, B. et al.) 157–203 (Wiley, Chichester, 1986).
    Google Scholar
  5. Khalil, M. A. K. & Rasmussen, R. A. Atmos. Environ. 21, 2445–2452 (1987).
    Article ADS CAS Google Scholar
  6. Khalil, M. A. K. & Rasmussen, R. A. J. geophys. Res. 88, 5131–5144 (1983).
    Article ADS CAS Google Scholar
  7. Seiler, W. & Conrad, R. in The Geophysiology of Amazonia: Vegetation and Climate Interactions (ed. Dickinson, R. E.) 133–162 (Wiley, New York, 1987).
    Google Scholar
  8. Cicerone, R. J. Nature 334, 198 (1988).
    Article ADS Google Scholar
  9. Barrie, L. A. & Hales, J. M. Tellus 36B, 333–355 (1984).
    Article Google Scholar
  10. Fay, J. A., Golomb, D. & Kumar, S. Atmos. Environ. 21, 61–68 (1987).
    Article ADS CAS Google Scholar
  11. Georgii, H. W., Perseke, C. & Rohbock, E. Atmos. Environ. 18, 581–589 (1984).
    Article ADS CAS Google Scholar
  12. Nihlgård, B. Ambio 14, 2–7 (1985).
    Google Scholar
  13. Hinrichsen, D. Ambio 15, 258–265 (1986).
    Google Scholar
  14. Aber, J. D., Melillo, J. M., McClaugherty, C. A. & Eshelman, K. N. Ecol. Bull. 35, 179–192 (1983).
    CAS Google Scholar
  15. Keller, M., Goreau, T. J., Wofsy, S. C., Kaplan, W. A. & McElroy, M. B. Geophys. Res. Lett. 10, 1156–1159 (1983).
    Article ADS CAS Google Scholar
  16. Harriss, R. C., Sebacher, D. L. & Day, F. P. Jr Nature 297, 673–674 (1982).
    Article ADS CAS Google Scholar
  17. Keller, M., Kaplan, W. A. & Wofsy, S. C. J. geophys. Res. 91, 11,791–11,802.
  18. Goreau, R. J. & de Mello, W. Z. Ambio 17, 274–281 (1988).
    Google Scholar
  19. Houghton, R. A. et al. Ecol. Monogr. 53, 235–262 (1983).
    Article CAS Google Scholar
  20. Ferenci, T., Strom, T. & Quayle, J. R. J. gen. Microbiol. 91, 79–91 (1975).
    Article CAS Google Scholar
  21. Hanson, R. S. Adv. appl. Microbiol. 26, 3–39 (1980).
    Article CAS Google Scholar
  22. Ward, B. B. Arch. Microbiol. 147, 126–133 (1987).
    Article CAS Google Scholar
  23. Lineweaver, H. & Burk, D. J. Am. chem. Soc. 56, 658–666 (1934).
    Article CAS Google Scholar
  24. Whittenbury, R., Phillips, K. C. & Wilkinson, J. F. J. gen. Microbiol. 61, 205–218 (1970).
    Article CAS Google Scholar
  25. Wilkinson, J. F. in Microbial Growth on Cl-Compounds (ed. The Organizing Committee) 45–57 (Society of Fermentation Technology, Osaka, Japan, 1975).
    Google Scholar
  26. Jones, R. D. & Morita, R. Y. Appl. environ. Microbiol. 45, 401–410 (1983).
    CAS PubMed PubMed Central Google Scholar
  27. Hyman, M. & Wood, P. M. Biochem. J. 212, 31–37 (1983).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543, USA
    P. A. Steudler, R. D. Bowden & J. M. Melillo
  2. Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, 03824, USA
    J. D. Aber

Authors

  1. P. A. Steudler
    You can also search for this author inPubMed Google Scholar
  2. R. D. Bowden
    You can also search for this author inPubMed Google Scholar
  3. J. M. Melillo
    You can also search for this author inPubMed Google Scholar
  4. J. D. Aber
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Steudler, P., Bowden, R., Melillo, J. et al. Influence of nitrogen fertilization on methane uptake in temperate forest soils.Nature 341, 314–316 (1989). https://doi.org/10.1038/341314a0

Download citation