Deglacial changes in ocean circulation from an extended radiocarbon calibration (original) (raw)

References

  1. Kromer, B. & Becker, B. German oak and pine 14C calibration, 7200–9400 BC. Radiocarbon 35, 125–136 (1993).
    Article CAS Google Scholar
  2. Björck, S. et al. Synchronized terrestrial-atmosphere deglacial records around the North Atlantic. Science 274, 1155– 1160 ((1996)).
    Article ADS Google Scholar
  3. Bard, E., Arnold, M., Fairbanks, R. G. & Hamelin, B. 230Th-234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35, 191–199 (1993).
    Article CAS Google Scholar
  4. Edwards, R. L. et al. Alarge drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260, 962–967 ( 1993).
    Article ADS CAS Google Scholar
  5. Bard, E. et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241–244 (1996).
    Article ADS CAS Google Scholar
  6. Hajdas, I. et al. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 1200 14C years BP. Clim. Dyn. 9, 107–116 (1993).
    Article Google Scholar
  7. Goslar, T. et al. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377, 414– 417 (1995).
    Article ADS CAS Google Scholar
  8. Hajdas, I. et al. AMS radiocarbon dating of annually laminated sediments from Lake Holzmaar, Germany. Quat. Sci. Rev. 14, 137 –143 (1995).
    Article ADS Google Scholar
  9. Wohlfarth, B. The chronology of the last termination: a review of radiocarbon-dated, high-resolution terrestrial stratigraphies. Quat. Sci. Rev. 15, 267–284 (1996).
    Article ADS Google Scholar
  10. Hughen, K. A., Overpeck, J. T., Peterson, L. C. & Anderson, R. F. in Palaeoclimatology and Palaeoceanography from Laminated Sediments (ed. Kemp, A. E. S.) 171–183 (Spec. Publ. 116, Geol. Soc., London, (1996)).
    Google Scholar
  11. Peterson, L. C., Overpeck, J. T., Kipp, N. G. & Imbrie, J. Ahigh-resolution late Quaternary upwelling record from the anoxic Cariaco Basin, Venezuela. Paleoceanography 6, 99 –119 (1991).
    Article ADS Google Scholar
  12. Hughen, K. A., Overpeck, J. T., Peterson, L. C. & Trumbore, S. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 51–54 (1996).
    Article ADS CAS Google Scholar
  13. Overpeck, J. T., Peterson, L. C., Kipp, N., Imbrie, J. & Rind, R. Climate change in the circum-North Atlantic region during the last deglaciation. Nature 338, 553–557 ( 1989).
    Article ADS Google Scholar
  14. Rind, D., Peteet, D., Broecker, W. S., McIntyre, A. & Ruddiman, W. The impact of cold North Atlantic sea surface temperatures on climate: implications for the Younger Dryas cooling (11-10 k). Clim. Dyn. 1, 33 (1986).
    Article Google Scholar
  15. Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311– 313 ((1992)).
    Article ADS Google Scholar
  16. Paillard, D. Macintosh program makes time-series analysis easy. Eos 77, 379 (1996).
    Article ADS Google Scholar
  17. Alley, r. B. et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–529 (1993).
    Article ADS Google Scholar
  18. Kapsner, W. R., Alley, R. B., Schuman, C. A., Anandakrishnan, S. & Grootes, P. M. Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years. Nature 373, 52–54 (1995).
    Article ADS CAS Google Scholar
  19. Druffel, E. M. Decade time scale variabiity of ventilation in the North Atlantic: high-precision measurements of bomb radiocarbon in banded corals. J. Geophys. Res. 94, 3271–3285 ( 1989).
    Article ADS CAS Google Scholar
  20. Broecker, W. S., Peteet, D. M. & Rind, D. Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315, 21–26 (1985).
    Article ADS CAS Google Scholar
  21. Boyle, E. A. & Keigwin, L. D. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).
    Article ADS CAS Google Scholar
  22. Stocker, T. F. & Wright, D. G. Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanography 11, 773–795 ( 1996).
    Article ADS Google Scholar
  23. Mikolajewicz, U. Ameltwater induced collapse of the thermohaline circulation and its influence on the oceanic distribution of δ14C and δ18O. 1– 25 (Tech. Rep. 189, Max-Planck-Inst. für Meteorologie, Hamburg, (1996)).
  24. Keir, R. S. On the late Pleistocene ocean geochemistry and circulation. Paleoceanography 3, 413–445 ( 1988).
    Article ADS Google Scholar
  25. Manabe, S. & Stouffer, R. J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378, 165–167 ( 1995).
    Article ADS CAS Google Scholar
  26. Rahmstorf, S. Rapid climate transitions in a coupled ocean-atmosphere model. Nature 372, 82–85 ( 1994).
    Article ADS CAS Google Scholar
  27. Charles, C. D. & Fairbanks, R. G. Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature 355, 416– 419 (1992).
    Article ADS Google Scholar
  28. Lehman, S. J. & Keigwin, L. D. Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356 , 757–762 (1992).
    Article ADS Google Scholar
  29. Stuiver, M. & Pollach, H. A. On the reporting of 14C ages. Radiocarbon 19, 355–359 (1977).
    Article Google Scholar
  30. Tric, E. et al. Paleointensity of the geomagnetic field during the last 80,000 years. J. Geophys. Res. 97, 9337– 9351 (1992).
    Article ADS Google Scholar

Download references