Structure of human pancreatic lipase (original) (raw)

Nature volume 343, pages 771–774 (1990)Cite this article

Abstract

PANCREATIC lipase (triacylglycerol acyl hydrolase) fulfills a key function in dietary fat absorption by hydrolysing triglycerides into diglycerides and subsequently into monoglycerides and free fatty acids. We have determined the three-dimensional structure of the human enzyme, a single-chain glycoprotein of 449 amino acids, by X-ray crystallography and established its primary structure by sequencing complementary DNA clones. Enzymatic activity is lost after chemical modification of Ser 152 in the porcine enzyme1,2, indicating that this residue is essential in catalysis, but other data3,4 are more consistent with a function in interfacial recogni-tion. Our structural results are evidence that Ser 152 is the nucleophilic residue essential for catalysis. It is located in the larger N-terminal domain at the C-terminal edge of a doubly wound parallel β-sheet and is part of an Asp-His-Ser triad, which is chemically analogous to, but structurally different from, that in the serine proteases. This putative hydrolytic site is covered by a surface loop and is therefore inaccessible to solvent. Interfacial activation, a characteristic property of lipolytic enzymes acting on water-insoluble substrates at water-lipid interfaces, probably involves a reorientation of this flap, not only in pancreatic lipases but also in the homologous hepatic and lipoprotein lipases.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Maylié, M. F., Charles, M. & Desnuelle, P. Biochim. biophys. Acta 276, 162–175 (1972).
    Article Google Scholar
  2. Guidoni, A., Benkouka, F., De Caro, J. & Rovery, M. Biochim. biophys. Acta 660, 148–150 (1981).
    Article CAS Google Scholar
  3. Chapus, C. & Sémériva, M. Biochemistry 15, 4988–4991 (1976).
    Article CAS Google Scholar
  4. Chapus, C., Sémériva, M., Bovier-Lapierre, C. & Desnuelle, P. Biochemistry 15, 4980–4987 (1976).
    Article CAS Google Scholar
  5. De Caro, J. et al. Biochim. biophys. Acta 671, 129–138 (1981).
    Article CAS Google Scholar
  6. Kerfélec, B., LaForge, K. S., Puigserver, A. & Scheele, G. Pancreas 1, 430–437 (1986).
    Article Google Scholar
  7. Sternby, B. & Borgström, B. Comp. biochem. Physiol. 688, 15–18 (1981).
    Google Scholar
  8. Bricogne, G. Acta crystallogr. A32, 832–847 (1976).
    Article ADS CAS Google Scholar
  9. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).
    Article CAS Google Scholar
  10. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).
    Article ADS Google Scholar
  11. Richardson, J. S. Meth. Enzym. 115, 341–358 (1985).
    Article CAS Google Scholar
  12. Richardson, J. S. Proc. natn. Acad. Sci. U.S.A. 73, 2619–2623 (1976).
    Article ADS CAS Google Scholar
  13. Sternberg, M. J. E. & Thornton, J. M. J. molec. Biol. 110, 269–283 (1977).
    Article CAS Google Scholar
  14. Chapus, C., Rovery, M., Sarda, L. & Verger, R. Biochimie 70, 1223–1234 (1988).
    Article CAS Google Scholar
  15. Datta, S. et al. J. biol. Chem. 263, 1107–1110 (1988).
    CAS PubMed Google Scholar
  16. Rotanova, T. V., Klaus, R., Ivanova, A. G., Ginodman, L. & Antonov, V. K. Bioorg. Khim. 2, 837–845 (1976).
    CAS Google Scholar
  17. Garner, C. W. J. biol. Chem. 255, 5064–5068 (1980).
    CAS PubMed Google Scholar
  18. De Caro, J. D., Rouimi, P. & Rovery, M. Eur. J. Biochem. 158, 601–607 (1986).
    Article CAS Google Scholar
  19. De Caro, J. D., Chautan, M. P., Rouimi, P. & Rovery, M. 70, 1785–1790 (1988).
  20. Bengtsson-Olivecrona, G., Olivecrona, T. & Jönvall, H. Eur. J. Biochem. 161, 281–288 (1986).
    Article CAS Google Scholar
  21. Bengtsson, G. & Olivecrona, T. Eur. J. Biochem. 113, 547–554 (1981).
    Article CAS Google Scholar
  22. Persson, B., Bengtsson-Olivecrona, G., Enerbäck, S., Olivecrona, T. & Jörnvall, H. Eur. J. Biochem. 179, 39–45 (1989).
    Article CAS Google Scholar
  23. Kabsch, W. J. appl. Crystallogr. 21, 916–924 (1988).
    Article CAS Google Scholar
  24. Dickerson, R. E., Weinzierl, J. E. & Palmer, R. A. Acta crystallogr. B24, 997–1001 (1968).
    Article Google Scholar
  25. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).
    Article CAS Google Scholar
  26. Bode, W. & Schwager, P. J. molec. Biol. 98, 693–717 (1975).
    Article CAS Google Scholar
  27. Bernstein, F. C. et al. J. molec. Biol. 112, 535–543 (1977).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Central Research Units, F. Hoffmann-La Roche Ltd, CH-4002, Basel, Switzerland
    F. K. Winkler, A. D'Arcy & W. Hunziker

Authors

  1. F. K. Winkler
    You can also search for this author inPubMed Google Scholar
  2. A. D'Arcy
    You can also search for this author inPubMed Google Scholar
  3. W. Hunziker
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Winkler, F., D'Arcy, A. & Hunziker, W. Structure of human pancreatic lipase.Nature 343, 771–774 (1990). https://doi.org/10.1038/343771a0

Download citation