Megakaryocytic and erythrocytic lineages share specific transcription factors (original) (raw)

Nature volume 344, pages 447–449 (1990)Cite this article

Abstract

ERYTHROID-specific genes contain binding sites for NF-E1 (also called GF-1 and Eryf-1 ; refs 1–3 respectively), the principal DNA-binding protein of the erythrocytic lineage. NF-E1 expression seems to be restricted to the erythrocytic lineage4. A closely related (if not identical) protein is found in both a human megakaryocytic cell line and purified human megakaryocytes; it binds to promoter regions of two megakaryocytic-specific genes. The binding sites and partial proteolysis profile of this protein are indistinguishable from those of the erythroid protein; also, NF-E1 messenger RNA is the same size in both the megakaryocytic and erythroid cell lines. Furthermore, point mutations that abolish binding of NF-E1 result in a 70% decrease in the transcriptional activity of a megakaryocytic-specific promoter. We also find that NF-E2, another _trans_5-acting factor of the erythrocytic lineage, is present in megakaryocytes. Transcriptional effects in both lineages might then be mediated in part by the same specific _trans_-acting factors. Our data strengthen the idea of a close association between the erythrocytic and the megakaryocytic lineages and could also explain the expression of markers specific to the erythrocytic and megakaryocytic lineages in most erythroblastic and megakary-oblastic permanent cell lines5,7.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Wall, L., DeBoer, E. & Grosveld, F. Genes Dev. 2, 1089–1100 (1988).
    Article CAS Google Scholar
  2. Martin, D. I. K., Tsai, S. & Orkin, S. H. Nature 338, 435–438 (1989).
    Article ADS CAS Google Scholar
  3. Evans, T., Reitman, M. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 85, 5976–5980 (1988).
    Article ADS CAS Google Scholar
  4. Tsai, S. F. et al. Nature 339, 446–451 (1989).
    Article ADS CAS Google Scholar
  5. Papayannopoulou, T., Nakamoto, B., Kurachi, S., Tweeddale, M. & Messner, H. Blood 72, 1029–1038 (1988).
    CAS PubMed Google Scholar
  6. Papayannopoulou, T. et al. J. clin. Invest. 79, 859–866 (1987).
    Article CAS Google Scholar
  7. Seigneurin, D. et al. Expl Hematol. 15, 822–830 (1987).
    CAS Google Scholar
  8. Prandini, M. H., Denarier, E., Frachet, P., Uzan, G. & Marguerie, G. Biochem. biophys. Res. Commun. 156, 595–601 (1988).
    Article CAS Google Scholar
  9. Wenger, R. H., Kieffer, N., Wicki, A. N. & Clementson, K. J. Biochem. biophys. Res. Commun. 156, 389–395 (1988).
    Article CAS Google Scholar
  10. Doi, T., Greenberg, S. M. & Rosenberg, R. D. Molec. cell. Biol. 7, 898–904 (1987).
    Article CAS Google Scholar
  11. Bray, P. F. et al. J. clin. Invest. 80, 1812–1817 (1987).
    Article CAS Google Scholar
  12. Ogura, M. et al. Blood 72, 49–60 (1988).
    CAS PubMed Google Scholar
  13. Martin, P. & Papayannopoulou, T. Science 216, 1233–1235 (1982).
    Article ADS CAS Google Scholar
  14. Tabilio, A. et al. EMBO J. 3, 453–459 (1984).
    Article CAS Google Scholar
  15. Mignotte, V., Eleouet, J. F., Raich, N. & Romeo, P. H. Proc. natn. Acad. Sci. U.S.A. 86, 6548–6552 (1989).
    Article ADS CAS Google Scholar
  16. Mignotte, V., Wall, L., DeBoer, E., Grosveld, F. & Romeo, P. H. Nucleic Acids Res. 17, 37–54 (1989).
    Article CAS Google Scholar
  17. Martin, D. I. K., Zon, L. I., Mutter, G. & Orkin, S. H. Nature, 344, 444–447 (1990).
    Article ADS CAS Google Scholar
  18. Hoffmann, L. M., Fritsch, M. K. & Gorski, J. J. biol. Chem. 256, 2597–2600 (1981).
    Google Scholar
  19. Berthier, R. et al. Expl Hematol. 15, 750–758 (1987).
    CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. INSERM U.91, Hôpital Henri Mondor, 94010, Créteil, France
    Paul-Henri Romeo, Virginie Joulin, Vincent Mignotte & William Vainchenker
  2. INSERM U.217, Grenoble Centre for Nuclear Studies, Grenoble, France
    Marie-Hélène Prandini, Michel Prenant, G´rard Marguerie & Georges Uzan

Authors

  1. Paul-Henri Romeo
    You can also search for this author inPubMed Google Scholar
  2. Marie-Hélène Prandini
    You can also search for this author inPubMed Google Scholar
  3. Virginie Joulin
    You can also search for this author inPubMed Google Scholar
  4. Vincent Mignotte
    You can also search for this author inPubMed Google Scholar
  5. Michel Prenant
    You can also search for this author inPubMed Google Scholar
  6. William Vainchenker
    You can also search for this author inPubMed Google Scholar
  7. G´rard Marguerie
    You can also search for this author inPubMed Google Scholar
  8. Georges Uzan
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Romeo, PH., Prandini, MH., Joulin, V. et al. Megakaryocytic and erythrocytic lineages share specific transcription factors.Nature 344, 447–449 (1990). https://doi.org/10.1038/344447a0

Download citation

This article is cited by