Megakaryocytic and erythrocytic lineages share specific transcription factors (original) (raw)
- Letter
- Published: 29 March 1990
- Marie-Hélène Prandini2,
- Virginie Joulin1,
- Vincent Mignotte1,
- Michel Prenant2,
- William Vainchenker1,
- G´rard Marguerie2 &
- …
- Georges Uzan2
Nature volume 344, pages 447–449 (1990)Cite this article
- 313 Accesses
- 3 Altmetric
- Metrics details
Abstract
ERYTHROID-specific genes contain binding sites for NF-E1 (also called GF-1 and Eryf-1 ; refs 1–3 respectively), the principal DNA-binding protein of the erythrocytic lineage. NF-E1 expression seems to be restricted to the erythrocytic lineage4. A closely related (if not identical) protein is found in both a human megakaryocytic cell line and purified human megakaryocytes; it binds to promoter regions of two megakaryocytic-specific genes. The binding sites and partial proteolysis profile of this protein are indistinguishable from those of the erythroid protein; also, NF-E1 messenger RNA is the same size in both the megakaryocytic and erythroid cell lines. Furthermore, point mutations that abolish binding of NF-E1 result in a 70% decrease in the transcriptional activity of a megakaryocytic-specific promoter. We also find that NF-E2, another _trans_5-acting factor of the erythrocytic lineage, is present in megakaryocytes. Transcriptional effects in both lineages might then be mediated in part by the same specific _trans_-acting factors. Our data strengthen the idea of a close association between the erythrocytic and the megakaryocytic lineages and could also explain the expression of markers specific to the erythrocytic and megakaryocytic lineages in most erythroblastic and megakary-oblastic permanent cell lines5,7.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Wall, L., DeBoer, E. & Grosveld, F. Genes Dev. 2, 1089–1100 (1988).
Article CAS Google Scholar - Martin, D. I. K., Tsai, S. & Orkin, S. H. Nature 338, 435–438 (1989).
Article ADS CAS Google Scholar - Evans, T., Reitman, M. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 85, 5976–5980 (1988).
Article ADS CAS Google Scholar - Tsai, S. F. et al. Nature 339, 446–451 (1989).
Article ADS CAS Google Scholar - Papayannopoulou, T., Nakamoto, B., Kurachi, S., Tweeddale, M. & Messner, H. Blood 72, 1029–1038 (1988).
CAS PubMed Google Scholar - Papayannopoulou, T. et al. J. clin. Invest. 79, 859–866 (1987).
Article CAS Google Scholar - Seigneurin, D. et al. Expl Hematol. 15, 822–830 (1987).
CAS Google Scholar - Prandini, M. H., Denarier, E., Frachet, P., Uzan, G. & Marguerie, G. Biochem. biophys. Res. Commun. 156, 595–601 (1988).
Article CAS Google Scholar - Wenger, R. H., Kieffer, N., Wicki, A. N. & Clementson, K. J. Biochem. biophys. Res. Commun. 156, 389–395 (1988).
Article CAS Google Scholar - Doi, T., Greenberg, S. M. & Rosenberg, R. D. Molec. cell. Biol. 7, 898–904 (1987).
Article CAS Google Scholar - Bray, P. F. et al. J. clin. Invest. 80, 1812–1817 (1987).
Article CAS Google Scholar - Ogura, M. et al. Blood 72, 49–60 (1988).
CAS PubMed Google Scholar - Martin, P. & Papayannopoulou, T. Science 216, 1233–1235 (1982).
Article ADS CAS Google Scholar - Tabilio, A. et al. EMBO J. 3, 453–459 (1984).
Article CAS Google Scholar - Mignotte, V., Eleouet, J. F., Raich, N. & Romeo, P. H. Proc. natn. Acad. Sci. U.S.A. 86, 6548–6552 (1989).
Article ADS CAS Google Scholar - Mignotte, V., Wall, L., DeBoer, E., Grosveld, F. & Romeo, P. H. Nucleic Acids Res. 17, 37–54 (1989).
Article CAS Google Scholar - Martin, D. I. K., Zon, L. I., Mutter, G. & Orkin, S. H. Nature, 344, 444–447 (1990).
Article ADS CAS Google Scholar - Hoffmann, L. M., Fritsch, M. K. & Gorski, J. J. biol. Chem. 256, 2597–2600 (1981).
Google Scholar - Berthier, R. et al. Expl Hematol. 15, 750–758 (1987).
CAS Google Scholar
Author information
Authors and Affiliations
- INSERM U.91, Hôpital Henri Mondor, 94010, Créteil, France
Paul-Henri Romeo, Virginie Joulin, Vincent Mignotte & William Vainchenker - INSERM U.217, Grenoble Centre for Nuclear Studies, Grenoble, France
Marie-Hélène Prandini, Michel Prenant, G´rard Marguerie & Georges Uzan
Authors
- Paul-Henri Romeo
You can also search for this author inPubMed Google Scholar - Marie-Hélène Prandini
You can also search for this author inPubMed Google Scholar - Virginie Joulin
You can also search for this author inPubMed Google Scholar - Vincent Mignotte
You can also search for this author inPubMed Google Scholar - Michel Prenant
You can also search for this author inPubMed Google Scholar - William Vainchenker
You can also search for this author inPubMed Google Scholar - G´rard Marguerie
You can also search for this author inPubMed Google Scholar - Georges Uzan
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Romeo, PH., Prandini, MH., Joulin, V. et al. Megakaryocytic and erythrocytic lineages share specific transcription factors.Nature 344, 447–449 (1990). https://doi.org/10.1038/344447a0
- Received: 03 October 1989
- Accepted: 09 February 1990
- Issue Date: 29 March 1990
- DOI: https://doi.org/10.1038/344447a0