Structure of the αβ tubulin dimer by electron crystallography (original) (raw)

References

  1. Ludveña, R. F. The multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cyt. 178, 207–275 (1998).
    Article Google Scholar
  2. Mukherjee, A. & Lutkenhaus, J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J.Bacteriol. 176, 2754–2758 (1994).
    Article CAS Google Scholar
  3. Gabor Miklos, G. L., Yamamoto, M., Burns, R. G. & Maleszka, R. An essential cell division gene of Drosophila, absent from Saccharomyces, encodes an unusual protein with tubulin-like and myosin-like peptide motifs. Proc. Natl Acad. Sci. USA 94, 5189–5194 (1997).
    Article ADS Google Scholar
  4. Nogales, E., Wolf, S. G., Zhang, S. X. & Downing, K. H. Preservation of 2-D crystals of tubulin for electron crystallography. J. Struct. Biol. 115, 199–208 (1995).
    Article CAS Google Scholar
  5. Nogales, E., Wolf, S. G., Khan, I. A., Ludueña, R. F. & Downing, K. H. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature 375, 424–427 (1995).
    Article ADS CAS Google Scholar
  6. Nogales, E., Wolf, S. G. & Downing, K. H. Visualizing the secondary structure of tubulin: three-dimensional map at 4 Å. J. Struct. Biol. 118, 119–127 (1997).
    Article CAS Google Scholar
  7. Burns, R. G. & Surridge, C. D. in Microtubules (eds Hyams, J. S. & Lloyd, C. W.) 3–32 (Wiley, New York, (1993)).
    Google Scholar
  8. Little, M. & Ludueña, R. F. Structural differences between brain β1- and β2-tubulins: implications for microtubule assembly and colchicine binding. EMBO J. 4, 51–56 (1985).
    Article CAS Google Scholar
  9. Wolf, S. G., Nogales, E., Kikkawa, M., Gratzinger, D., Hirokawa, N. & Downing, K. H. Interpreting a medium-resolution model of tubulin: comparison of zinc-sheet and microtubule structure. J. Mol. Biol. 263, 485–501 (1996).
    Article Google Scholar
  10. Shivanna, B. D., Mejillano, M. R., Williams, T. D. & Himes, R. H. Exchangeable GTP binding site of β-tubulin—identification of cysteine 12 as the major site of cross-linking by direct photoaffinity labeling. J. Biol. Chem. 268, 127–132 (1993).
    CAS PubMed Google Scholar
  11. Hesse, J., Thierauf, M. & Ponstingl, H. Tubulin sequence region β155–174 is involved in binding exchangeable guanosine triphosphate. J. Biol. Chem. 262, 15472–15475 (1987).
    CAS PubMed Google Scholar
  12. Linse, K. & Mandelkow, E.-M. The GTP-binding peptide of β-tubulin. Localization by direct photoaffinity labeling and comparison with nucleotide-binding proteins. J. Biol. Chem. 263, 15205–15210 (1988).
    CAS PubMed Google Scholar
  13. Davis, A., Sage, C. R., Dougherty, C. A. & Farrell, K. W. Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of β-tubulin. Science 264, 839–842 (1994).
    Article ADS CAS Google Scholar
  14. Little, M. & Ludueña, R. F. Location of two cysteines in brain β1-tubulin that can be cross-linked after removal of exchangeable GTP. Biochim. Biophys. Acta 912, 28–33 (1987).
    Article CAS Google Scholar
  15. Bai, R. et al. Identification of cysteine 354 of β-tubulin as part of the binding site for the A ring of colchicine. J. Biol. Chem. 271, 12639–12645 (1996).
    Article CAS Google Scholar
  16. Uppuluri, S., Knipling, L., Sackett, D. L. & Wolff, J. Localization of the colchicine-binding site of tubulin. Proc. Natl Acad. Sci. USA 90, 11598–11602 (1993).
    Article ADS CAS Google Scholar
  17. Shearwin, K. E. & Timasheff, S. N. Effect of colchicine analogs on the dissociation of αβ tubulin into subunits: the locus of colchicine binding. Biochemistry 33, 894–901 (1994).
    Article CAS Google Scholar
  18. Andreu, J. M. Site-directed antibodies to tubulin. Cell Motil. Cytoskel. 26, 1–6 (1993).
    Article CAS Google Scholar
  19. Caplow, M., Ruhlen, R. L. & Shanks, J. The free energy of hydrolysis of a microtubule-bound nucleoside triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J. Cell Biol. 127, 779–788 (1994).
    Article CAS Google Scholar
  20. Vale, R. D., Coppin, C. M., Malik, F., Kull, F. J. & Milligan, R. A. Tubulin GTP hydrolysis influences the structure, mechanical properties, and kinesin-driven transport of microtubules. J. Biol. Chem. 269, 23769–23775 (1994).
    CAS PubMed Google Scholar
  21. Hyman, A. A., Chrétien, D., Arnal, I. & Wade, R. H. Structural changes accompanying GTP hydrolysis of microtubules: information from a slowly hydrolyzable analog guanylyl-(α,β)-methylene-diphosphonate. J. Cell Biol. 128, 117–125 (1995).
    Article CAS Google Scholar
  22. Díaz, J. F., Pantos, E., Bordas, J. & Andreu, J. M. Solution structure of GDP-tubulin double rings to 3 nm resolution and comparison with microtubules. J. Mol. Biol. 238, 214–225 (1994).
    Article Google Scholar
  23. Mandelkow, E. & Mandelkow, E.-M. Microtubules and microtubule-associated proteins. Curr. Opin. Cell Biol. 7, 72–81 (1995).
    Article CAS Google Scholar
  24. Gueritte-Voegelein, F. et al. Structure of a synthetic taxol precursor: N -tert-butoxycarbonyl-10-deacetyl-N -debenzoyltaxol. Acta Crystallogr. C 46, 781–784 (1990).
    Article Google Scholar
  25. Rao, S., Krauss, N. E., Heerding, J. M., Orr, G. A. & Horwitz, S. B. 3′-(p -Azidobenzamido)taxol photolabels the N-terminal 31 amino acids of β-tubulin. J. Biol. Chem. 269, 3132–3134 (1994).
    CAS PubMed Google Scholar
  26. Rao, S., Orr, G. A., Chaudhary, A. G., Kingston, D. G. I. & Horwitz, S. B. Characterization of the taxol binding site on the microtubule. J. Biol. Chem. 270, 20235–20238 (1995).
    Article CAS Google Scholar
  27. Löwe, J. Y. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ complexed with GDP. Nature 391, 203–206 (1998).
    Article ADS Google Scholar
  28. Ponstingl, H., Krauhs, E., Little, M., Kempf, T., Hofer-Warbinek, R. & Ade, W. Amino acid sequence of α- and β-tubulins from pig brain: heterogeneity and regional similarity to muscle proteins. Cold Spring Harbor Symp. Quant. Biol. 46, 191–197 (1982).
    Article Google Scholar
  29. Mitchison, T. J. Localization of an exchangeable GTP binding site at the plus end of microtubules. Science 261, 1044–1047 (1993).
    Article ADS CAS Google Scholar
  30. Fan, J., Griffiths, A. D., Lockhart, A., Cross, R. A. & Amos, L. A. Microtubule minus ends can be labeled with a phage display antibody specific to α-tubulin. J. Mol. Biol. 259, 325–330 (1996).
    Article CAS Google Scholar

Download references