Regulation of the pituitary-specific homeobox gene GHF1 by cell-autonomous and environmental cues (original) (raw)
- Letter
- Published: 28 June 1990
Nature volume 345, pages 829–832 (1990)Cite this article
Abstract
HOMEODOMAIN proteins1,2 function in determination of mating type in yeast3, segmentation in fruit flies4 and cell-type specific gene expression in mammals5. In Drosophila, expression of homeobox genes is controlled by cell-autonomous interactions between regulatory proteins and environmental clues6–8. Similar controls may operate during mammalian limb development9,10 and frog embryogenesis11,12. But, the exact way in which expression of homeodomain proteins is regulated in these systems is not clear and requires biochemical analysis of homeobox gene transcription. We now describe such an analysis of the GHF1 gene, which encodes a mammalian homeodomain protein specifying expression of the growth hormone (GH) gene in anterior pituitary somatotrophs13–15. GHF1 is transcribed in a highly restricted manner and the presence of GHF1 protein is correlated both temporally and spatially with activation of the GH gene during pituitary development16. Analysis of the GHF1 promoter indicates that transcription is also controlled by cell-autonomous interactions involving positive autoregulation by GHF1, and environmental cues that modulate the intracellular level of cyclic AMP and thereby the activity of cAMP response element binding protein (CREB)17, a ubiquitous transactivator that binds to the GHF1 promoter.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Gehring, W. J. Science 236, 1245–1252 (1987).
Article ADS CAS PubMed Google Scholar - Scott, M. P., Tamkun, J. W. & Hartzell, G. W. III. Biochim. biophys. Acta 989, 25–48 (1989).
CAS PubMed Google Scholar - Herskowitz, I. Nature 342, 749–757, (1989).
Article ADS CAS PubMed Google Scholar - Akam, M. Development 101, 1–22 (1987).
CAS PubMed Google Scholar - Robertson, M. Nature 336, 522–524 (1988).
Article ADS CAS PubMed Google Scholar - Rijsewijk, F. et al. Cell 50, 649–657 (1987).
Article CAS PubMed Google Scholar - Nakano, Y. et al. Nature 341, 508–513 (1989).
Article ADS CAS PubMed Google Scholar - Hooper, J.E. & Scott, M.P. Cell 59, 751–765 (1989).
Article CAS PubMed Google Scholar - Dolle, P., Izpisna-Belmonte, J. C., Falkenstein, H., Renucci, A. & Doboule, D. Nature 342, 767–772 (1989).
Article ADS CAS PubMed Google Scholar - Lewis, J. & Martin, P. Nature 342, 734–735 (1989).
Article ADS CAS PubMed Google Scholar - Rosa, F. M. Cell 57, 965–974, (189).
Article Google Scholar - Ruiz Altaba A. & Melton, D. A. Nature 341, 33–38 (1989).
Article ADS CAS Google Scholar - Bodner, M. et al. Cell 55, 505–518 (1988).
Article CAS PubMed Google Scholar - Ingraham, H. A. et al. Cell 55, 519–529 (1988).
Article CAS PubMed Google Scholar - Karin, M., Castrillo, J. L. & Theill, L. E. Trends Genet. 6, 92–96 (1990).
Article CAS PubMed Google Scholar - Dollé, P. et al. Cell 60, 809–820 (1990).
Article PubMed Google Scholar - Gonzalez, G. A. et al. Nature 337, 749–752 (1989).
Article ADS CAS PubMed Google Scholar - McCormick, A. et al. Cell 55, 379–389 (1988).
Article CAS PubMed Google Scholar - Sargent, T. D. et al. Proc. natn. Acad. Sci. U.S.A. 76, 3256–3260 (1979).
Article ADS CAS Google Scholar - Angel, P. et al. Nature 332, 166–171 (1988).
Article ADS CAS PubMed Google Scholar - Lefevre, C. et al. EMBO J. 6, 971–981 (1987).
Article CAS PubMed PubMed Central Google Scholar - Bodner, M. & Karin, M. Cell 50, 267–275 (1987).
Article CAS PubMed Google Scholar - Theill, L. E., Castrillo, J. L., Wu, D. & Karin, M. Nature 342, 945–948 (1989).
Article ADS CAS PubMed Google Scholar - Billestrup, N., Swanson, L. W. & Vale, W. Proc. natn. Acad. Sci. U.S.A. 83, 6854–6857 (1986).
Article ADS CAS Google Scholar - Rivier, J., Spiess, J., Thorner, M. & Vale, W. Nature 300, 276–278 (1982).
Article ADS CAS PubMed Google Scholar - Bilezikjian, L. M. & Vale, W. W. Endorinology 113, 1726–1731 (1983).
Article CAS Google Scholar - Barinaga, M. et al. Nature 306, 84–85, (1983).
Article ADS CAS PubMed Google Scholar - Copp, R. P., & Samuels, H. H. Molec. Endocr. 3, 790–796 (1989).
Article CAS PubMed Google Scholar - Dana, S. & Karin, M. Molec. Endocr. 3, 815–821 (1989).
Article CAS PubMed Google Scholar - Hiromi, Y. & Gehring, W. J. Cell 50, 963–974 (1987).
Article CAS PubMed Google Scholar - Bienz, M. & Tremml, G. Nature 333, 576–578 (1988).
Article ADS CAS PubMed Google Scholar - Hattori, K., Angel, P., LeBeau, M. M. & Karin, M. Proc. natn. Acad. Sci. U.S.A. 85, 9148–9152 (1988).
Article ADS CAS Google Scholar - Mullis, K.S. & Faloona, F. A. Meth. Enzym. 155, 335–350 (1987).
Article CAS PubMed Google Scholar - Studier, F. W., Rosenberg, A. H. & Dunn, J. J. Meth. Enzym. (in the press).
Author information
Authors and Affiliations
- Department of Pharmacology, M036, School of Medicine, Center for Molecular Genetics, University of California, San Diego, La Jolla, California, 92093, USA
Alison McCormick, Helen Brady, Lars E. Theill & Michael Karin
Authors
- Alison McCormick
You can also search for this author inPubMed Google Scholar - Helen Brady
You can also search for this author inPubMed Google Scholar - Lars E. Theill
You can also search for this author inPubMed Google Scholar - Michael Karin
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
McCormick, A., Brady, H., Theill, L. et al. Regulation of the pituitary-specific homeobox gene GHF1 by cell-autonomous and environmental cues.Nature 345, 829–832 (1990). https://doi.org/10.1038/345829a0
- Received: 01 February 1990
- Accepted: 10 April 1990
- Issue Date: 28 June 1990
- DOI: https://doi.org/10.1038/345829a0