Microorganisms associated with chromosome destruction and reproductive isolation between two insect species (original) (raw)

Nature volume 346, pages 558–560 (1990)Cite this article

Abstract

MICROORGANISMS have been implicated in causing cytoplasmic incompatibility in a variety of insect species, including mosquitoes, fruitflies, beetles and wasps1–17. The effect is typically unidirectional: incompatible crosses produce no progeny1–11 or sterile males12–14, whereas the reciprocal crosses produce normal progeny. The parasitic wasp Nasonia vitripennis is one of the few species in which the cytogenetic mechanism of incompatibility is known. In this species the paternal chromosome set forms a tangled mass in a fertilized egg and is eventually lost16. Here we report that cytoplasmic microorganisms are associated with complete bidirectional incompatibility between N. vitripennis and a closely related sympatric species, N. giraulti. Microorganisms can be seen in the eggs of both species. Hybrid offspring are normally not produced in crosses between the two species, but do occur after elimination of the microorganisms by antibiotic treatment. A cytogenetic and genetic study shows that bidirectional interspecific incompatibility is due to improper condensation of the paternal chromosomes. Microorganism-mediated reproductive isolation is of interest because it could provide a rapid mode of speciation18,19. The mechanism of incompatibility in Nasonia is also of interest as a potential tool for studying chromosome imprinting and chromosome condensation.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Hoffman, A. A., Turelli, M. & Simmons, G. M. Evolution 40, 692–701 (1986).
    Article Google Scholar
  2. Hoffman, A. A. Entomol. Exp. Appl. 48, 61–67 (1988).
    Article Google Scholar
  3. Hsiao, T. H. & Hsiao, C. Entomol. Exp. Appl. 37, 155–159 (1985).
    Article Google Scholar
  4. Wade, M. J. & Stevens, L. Science 227, 527–528 (1989).
    Article ADS Google Scholar
  5. Binnington, K. C. & Hoffmann, A. A. J. invert Pathol. 54, 344–352 (1989).
    Article Google Scholar
  6. Trpis, M., Perrone, J. B., Reissig, M. & Parker, K. L. J. Hered. 72, 313–317 (1981).
    Article Google Scholar
  7. Yen, J. H. & Barr, A. R. Nature 232, 657–658 (1971).
    Article CAS ADS Google Scholar
  8. Hsiao, T. H. & Hsiao, C. J. invert. Pathol. 45, 244–246 (1985).
    Article Google Scholar
  9. O'Neill, S. L. J. invert. Pathol. 53, 132–134 (1989).
    Article Google Scholar
  10. Yen, J. H. & Barr, A. R. J. invert. Pathol. 22, 242–250 (1973).
    Article CAS Google Scholar
  11. Kellen, W. R., Hoffman, D. F. & Kwock, R. A. J. invert. Pathol. 37, 273–283 (1981).
    Article Google Scholar
  12. Dobzhansky, T. & Paulovsky, O. Genetics 55, 141–156 (1967).
    Article CAS Google Scholar
  13. Ehrman, L. & Kernaghan, R. P. J. Hered. 62, 67–71 (1971).
    Article CAS Google Scholar
  14. Williamson, D. L., Ehrman, L. & Kernaghan, R. P. Proc. natn. Acad. Sci. U.S.A 68, 2158–2160 (1971).
    Article CAS ADS Google Scholar
  15. Richardson, P. M., Holmes, W. P. & Saul II, G. B. J. invert. Pathol. 50, 176–183 (1987).
    Article CAS Google Scholar
  16. Ryan, S. L. & Saul II, G. B. Molec. gen. Genet. 103, 29–36 (1968).
    Article CAS Google Scholar
  17. Conner, G. W. & Saul II, G. B. J. Hered. 77, 211–213 (1986).
    Article Google Scholar
  18. Laven, H., Wright, J. W. & Pal, R. in Genetics of Insect Vectors of Diseases (Elsevier, Amsterdam, 1967).
    Google Scholar
  19. Thompson, J. N. Biol. J. Linn. Soc. 32, 385–393 (1987).
    Article Google Scholar
  20. Whiting, A. R. Q. Rev. Biol. 42, 333–406 (1967).
    Article Google Scholar
  21. Werren, J. H. Evolution 37, 116–124 (1983).
    Article Google Scholar
  22. Darling, D. C. & Werren, J. H. Ann. Entomol. Soc. Amer. 83, 352–370 (1990).
    Article Google Scholar
  23. Werren, J. H., Nur, U. & Eickbush, D. Nature 327, 75–76 (1987).
    Article CAS ADS Google Scholar
  24. Caspari, E. & Watson, G. S. Evolution 13, 568–570 (1959).
    Article Google Scholar
  25. Laven, H. Z. Vererbungslehre 88, 478–516 (1957).
    Google Scholar
  26. Subbarao, S. K., Krishnamurthy, B. S., Curtis, C. F., Adak, T. & Chandrahas, R. K. Genetics 87, 381–390 (1977).
    Article CAS Google Scholar
  27. Nur, U., Werren, J. H., Eickbush, D. G., Burke, W. B. & Eickbush, T. H. Science 240, 512–514 (1988).
    Article CAS ADS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Biology, University of Rochester, Rochester, New York, 14627, USA
    Johannes A. J. Breeuwer & John H. Werren

Authors

  1. Johannes A. J. Breeuwer
    You can also search for this author inPubMed Google Scholar
  2. John H. Werren
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Breeuwer, J., Werren, J. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species.Nature 346, 558–560 (1990). https://doi.org/10.1038/346558a0

Download citation

This article is cited by