Crystal structure of ovalbumin as a model for the reactive centre of serpins (original) (raw)
- Letter
- Published: 06 September 1990
- Andrew G. W. Leslie2,
- John T. Finch2,
- William G. Turnell2,
- Paul J. McLaughlin2 &
- …
- Robin W. Carrell1
Nature volume 347, pages 99–102 (1990)Cite this article
- 1142 Accesses
- 357 Citations
- 6 Altmetric
- Metrics details
Abstract
THE serpins are a widely distributed family of proteins with diverse functions; they include the key serine protease inhibitors of human plasma as well as noninhibitory homologues such as hormone-binding globulins, angiotensinogen and egg-white ovalbumin1. Sequence alignment based on the crystal structure of the cleaved form of the archetypal serpin, a α1-antitrypsin2, indicates that the serpins share a common highly ordered structure3. On cleavage of the reactive centre peptide bond, they characteristically undergo a remarkable conformational change, the newly generated C ter-minus moving some 70 Å to the opposite pole of the molecule. The structure of this post-cleavage form is known, but the conformation of the intact serpins and in particular that of their reactive centre is not. Wright et al.'s structure of plakalbumin4 (ovalbumin cleaved by subtilisin) has provided evidence for the conformational change that results from cleavage. We have now determined the structure of native ovalbumin to 1.95 Å resolution and have found that the intact peptide loop forming the analogue to the reactive centre of the inhibitory serpins takes the unexpected form of a protruding, isolated helix. This model of the intact structures of the serpins suggests how they may interact with their target proteases.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Hunt, L. T. & Dayhoff, M. O. Biochem. biophys. Res. Commun. 95, 864–871 (1980).
Article CAS Google Scholar - Löebermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. J. molec. Biol. 177, 531–556 (1984).
Article Google Scholar - Huber, R. & Carrell, R. W. Biochemistry 28, 8951–8966 (1989).
Article CAS Google Scholar - Wright, H. T., Qian, H. X. & Huber, R. J. molec. Biol. 213, 513–518 (1990).
Article CAS Google Scholar - Carrell, R. W. & Owen, M. C. Nature 317, 730–732 (1985).
Article ADS CAS Google Scholar - Pemberton, P. A., Stein, P. E., Pepys, M. B., Potter, J. M. & Carrell, R. W. Nature 336, 257–258 (1988).
Article ADS CAS Google Scholar - Gettins, P. J. biol. Chem. 264, 3781–3785 (1989).
CAS PubMed Google Scholar - Stein, P. E., Tewkesbury, D. A. & Carrell, R. W. Biochem. J. 262, 103–107 (1989).
Article CAS Google Scholar - Linderstrøm-Lang, K. & Ottesen, M. C. r. Trav. Lab. Carlsberg 26, 403–442 (1949).
Google Scholar - Wright, H. T. J. biol. Chem. 259, 14335–14336 (l984).
Google Scholar - Perry, D. J. & Carrell, R. W. Molec. Biol. Med. 6, 239–243 (1989).
CAS PubMed Google Scholar - Levy, N. X., Ramesh, N., Cicardi, M., Harrison, R. A. & Davis, A. E. Proc. natn. Acad. Sci. U.S.A. 87, 265–268 (1990).
Article ADS CAS Google Scholar - McPhalen, C. A. & James, M. N. G. Biochemistry 26, 261–269 (1987).
Article CAS Google Scholar - Bode, W., Papamokos, E., Musil, D., Seemueller, U. & Fritz, H. EMBO J. 5, 813–818 (1986).
Article CAS Google Scholar - Ptitsyn, O. B. Pure Appl. Chem. 31, 227–244 (1972).
Article CAS Google Scholar - Warner, R. C. in The Proteins Vol. 2a (eds Neurath, H. & Bailey, K.) 435–485 (Academic, New York, 1954).
Book Google Scholar - Goux, W. J. & Venkatasoubramanian, P. N. Biochemistry 25, 84–94 (1986).
Article CAS Google Scholar - Miller, M., Weinstein, J. N. & Wlodawer, A. J. biol. Chem. 258, 5864–5866 (1983).
CAS PubMed Google Scholar - Sussmann, J. L., Holbrook, S. R., Church, G. M. & Kim, S.-H. Acta crystallogr. A33, 800–804 (1977).
Article Google Scholar - Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).
Article ADS Google Scholar - Hendrickson, W. A. & Konnert, J. H. in Computing in Crystallography (eds Diamond, R., Ramaseshan, S. & Venkatesan, K.) 13.01–13.23 (Indian Institute of Science, Bangalore, 1980).
Google Scholar - Jones, T. A., J. appl. Crystallogr. 11, 268–272 (1978).
Article CAS Google Scholar
Author information
Authors and Affiliations
- Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 2QH, UK
Penelope E. Stein & Robin W. Carrell - MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
Andrew G. W. Leslie, John T. Finch, William G. Turnell & Paul J. McLaughlin
Authors
- Penelope E. Stein
- Andrew G. W. Leslie
- John T. Finch
- William G. Turnell
- Paul J. McLaughlin
- Robin W. Carrell
Rights and permissions
About this article
Cite this article
Stein, P., Leslie, A., Finch, J. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins.Nature 347, 99–102 (1990). https://doi.org/10.1038/347099a0
- Received: 22 March 1990
- Accepted: 18 June 1990
- Issue Date: 06 September 1990
- DOI: https://doi.org/10.1038/347099a0