Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs (original) (raw)

Nature volume 347, pages 203–206 (1990)Cite this article

Abstract

THE aminoacyl-transfer RNA synthetases (aaRS) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have limited sequence homology. Out of the 18 known aaRS, only 9 (ref. 1), referred to as class I synthetases (GlnRS, TyrRS, MetRS, GluRS, ArgRS, ValRS, IleRS, LeuRS, TrpRS), display two short common consensus sequences ('HIGH' and 'KMSKS') which indicate, as observed in three crystal structures2–4, the presence of a structural domain (the Rossman fold) that binds ATP. We report here the sequence of Escherichia coll ProRS, a dimer of relative molecular mass 127,402, which is homologous to both ThrRS and SerRS. These three latter aaRS share three new sequence motifs with AspRS, AsnRS, LysRS, HisRS and the β subunit of PheRS. These three motifs (motifs 1, 2 and 3), in a search through the entire data bank, proved to be specific for this set of aaRS (referred to as class II). Class II may also contain AlaRS and GlyRS, because these sequences have a typical motif 3. Surprisingly, this partition of aaRS in two classes is found to be strongly correlated on the functional level with the acylation occurring either on the 2′ OH (class I) or 3′ OH (class II) of the ribose of the last nucleotide of tRNA.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Burbaum, J., Starzyk, R. M. & Schimmel, P. Proteins 7, 99–111 (1990).
    Article CAS Google Scholar
  2. Brick, P., Bhat, T. N. & Blow, D. M. J. molec. Biol. 208, 83–98 (1988).
    Article Google Scholar
  3. Zelwer, C., Risler, J.-L. & Brunie, S. J. molec. Biol. 155, 63–81 (1982).
    Article CAS Google Scholar
  4. Rould, M. A., Perona, J. J., Söll, D. & Steitz, T. A. Science 246, 1135–1142 (1989).
    Article ADS CAS Google Scholar
  5. Bohman, K. & Isaksson, L. A. Molec. gen. Genet. 177, 603–605 (1980).
    Article CAS Google Scholar
  6. Dale, R. M. K., McClure, B. A. & Houchins, J. P. Plasmid 13, 31–40 (1985).
    Article CAS Google Scholar
  7. Tabor, S. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 84, 4767–4771 (1987).
    Article ADS CAS Google Scholar
  8. Brendel, V. & Trifonov, E. V. Nucleic Acids Res. 10, 4411–4427 (1984).
    Article Google Scholar
  9. Springer, M., Graffe, M., Dondon, J. & Grunberg-Manago, M. EMBO J. 8, 2417–2427 (1989).
    Article CAS Google Scholar
  10. Moine, H. thesis., Univ. Louis Pasteur, Strasbourg (1990).
  11. Molina, A. J., Peterson, R. & Yang, D.C.H. J. biol. Chem. 264, 16608–16612 (1989).
    Google Scholar
  12. Gampel, A. & Tzagoloff, A. Proc. natn. Acad Sci. U.S.A. 86, 6023–6027 (1989).
    Article ADS CAS Google Scholar
  13. Anselme, J. & Härtlein, M. Gene 84, 481–485 (1989).
    Article CAS Google Scholar
  14. Leveque, F., Plateau, P., Dessen, P. & Blanquet, S. Nucleic. Acids Res. 18, 305–312 (1990).
    Article CAS Google Scholar
  15. Wek, R. C., Jackson, B. M. & Hinnenbusch, A. G. Proc. natn. Acad. Sci. U.S.A. 86, 4579–4583 (1989).
    Article ADS CAS Google Scholar
  16. Gribskov, M., MacLachlan, A. D. & Eisenberg, D. Proc. natn. Acad. Sci. U.S.A. 84, 4355–4358 (1987).
    Article ADS CAS Google Scholar
  17. Jasin, M., Regan, L. & Schimmel, P. R. Nature 306, 441–447 (1983).
    Article ADS CAS Google Scholar
  18. Prevost, G., Eriani, G., Kern, D., Dirheimer, G. & Gangloff, J. Eur. J. Biochem. 180, 351–358 (1989).
    Article CAS Google Scholar
  19. Eriani, G. thesis., Univ. Louis Pasteur, Strasbourg (1990).
  20. Hecht, S. M. in Transfer-RNA Structure, Properties and Recognition (eds Schimmel, P. R., Söll, D. & Abelson, J. N.) 345–360 (Cold Spring Harbor Laboratory, New York, 1979).
    Google Scholar
  21. Weiner, A. M. & Maizels, N. Proc. natn. Acad. Sci. U.S.A. 84, 7383–7387 (1987).
    Article ADS CAS Google Scholar
  22. Fraser, T. H. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 72, 3044–3048 (1975).
    Article ADS CAS Google Scholar
  23. von der Haar, F. & Cramer, F. Biochemistry 15, 4131–4136 (1976).
    Article CAS Google Scholar
  24. Fersht, A. R. & Kaethner, M. M. Biochemistry 15, 3342–3346 (1976).
    Article CAS Google Scholar
  25. Brune, M., Schumann, R. & Wittinghofer, F. Nucleic Acids Res. 13, 7139–7147 (1985).
    Article CAS Google Scholar
  26. Devereux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).
    Article CAS Google Scholar
  27. Eriani, G., Dirheimer, G. & Gangloff, J. Nucleic Acids Res. 17, 5725–5736 (1989).
    Article CAS Google Scholar
  28. Berger, S. L., Wallace, D. M., Puskas, R. S. & Eschenfeldt, W. H. Biochemistry 22, 2365–2373 (1983).
    Article CAS Google Scholar
  29. Argos, P. J. molec. Biol. 193, 385–396 (1987).
    Article CAS Google Scholar
  30. Mirande, M. & Waller, J. P. J. biol. Chem. 263, 18443–18451 (1988).
    CAS PubMed Google Scholar
  31. Nilssen, T. W. et al. Proc. natn. Acad. Sci. U.S.A. 85, 3604–3607 (1988).
    Article ADS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Laboratoire de Biochimie, IBMC du CNRS, 15 rue Rene Descartes, 67084, Strasbourg, France
    Gilbert Eriani, Marc Delarue, Olivier Poch, Jean Gangloff & Dino Moras
  2. Laboratoire de Cristallographie Biologique, IBMC du CNRS, 15 rue Rene Descartes, 67084, Strasbourg, France
    Marc Delarue & Dino Moras

Authors

  1. Gilbert Eriani
    You can also search for this author inPubMed Google Scholar
  2. Marc Delarue
    You can also search for this author inPubMed Google Scholar
  3. Olivier Poch
    You can also search for this author inPubMed Google Scholar
  4. Jean Gangloff
    You can also search for this author inPubMed Google Scholar
  5. Dino Moras
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Eriani, G., Delarue, M., Poch, O. et al. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs.Nature 347, 203–206 (1990). https://doi.org/10.1038/347203a0

Download citation

This article is cited by