Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction (original) (raw)

References

  1. Sasai, Y. & De Robertis, E. M. Ectodermal patterning in vertebrate embryos. Dev. Biol. 182, 5–20 (1997).
    Article CAS PubMed Google Scholar
  2. Gerhart, J., Doniach, T. & Steward, R. in Gastrulation (eds Keller, R., Clark, W. H. & Griffin, F.) 57–77 (Plenum, New York, 1991).
    Book Google Scholar
  3. Lemaire, P. & Kodjabachian, L. The vertebrate organizer, structure and molecules. Trends Genet. 12, 525–531 (1996).
    Article CAS PubMed Google Scholar
  4. Bouwmeester, T., Kim, S.-H., Sasai, Y., Li, B. & De Robertis, E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).
    Article ADS CAS PubMed Google Scholar
  5. Bally-cuif, L. & Boncinelli, E. Transcription factors and head formation in vertebrates. BioEssays 19, 127–135 (1997).
    Article CAS PubMed Google Scholar
  6. Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C. & Niehrs, C. Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389, 517–519 (1977).
    Article ADS Google Scholar
  7. Nusse, R. & Varmus, H. E. Wnt genes. Cell 69, 1073–1087 (1992).
    Article CAS PubMed Google Scholar
  8. Parr, B. A. & McMahon, A. P. Wnt-genes and vertebrate development. Curr. Opin. Genet. Dev. 4, 523–528 (1994).
    Article CAS PubMed Google Scholar
  9. Moon, R. T., Brown, J. D. & Torres, M. Wnts modulate cell fate and behavior during vertebrate development. Trends Genet. 13, 157–162 (1997).
    Article CAS PubMed Google Scholar
  10. Wang, S., Krinks, M., Lin, K., Luyten, F. P. & Moos, M. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, 757–766 (1997).
    Article CAS PubMed Google Scholar
  11. Leyns, L., Bouwmeester, T., Kim, S.-H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of wnt-signals expressed in the Spemann organizer. Cell 88, 747–756 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  12. Glinka, A., Delius, H., Blumenstock, C. & Niehrs, C. Combinatorial signalling by Xwnt-11 and Xnr3 in the organizer epithelium. Mech. Dev. 60, 221–231 (1996).
    Article CAS PubMed Google Scholar
  13. Suzuki, A.et al. Atruncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl Acad. Sci. USA 91, 10255–10259 (1994).
    Article ADS CAS PubMed PubMed Central Google Scholar
  14. Sasai, Y.et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  15. Devoto, S. H., Melancon, E., Eisen, J. S. & Westerfield, M. Identification of separate slow and fast muscle pioneer cells in vivo, prior to somite formation. Development 122, 3371–3380 (1996).
    CAS PubMed Google Scholar
  16. Kao, K. R. & Elinson, R. P. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127, 64–77 (1988).
    Article CAS PubMed Google Scholar
  17. Cho, K. W., Blumberg, B., Steinbeisser, H. & De Robertis, E. M. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  18. Blitz, I. L. & Cho, K. W. Y. Anterior neuroectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development 121, 993–1004 (1995).
    CAS PubMed Google Scholar
  19. Pannese, M.et al. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121, 707–720 (1995).
    CAS PubMed Google Scholar
  20. Gammil, L. S. & Sive, H. Identification of otx2 target genes and restrictions in ectodermal competence during cement gland formation. Development 124, 471–481 (1996).
    Google Scholar
  21. Sasai, Y., Lu, B., Steinbeisser, H. & De Robertis, E. M. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336 (1995).
    Article ADS CAS PubMed Google Scholar
  22. Fagotto, F., Guger, K. & Gumbiner, B. M. Induction of the primary dorsalizing center in Xenopus by the Wnt/GSK/beta-catenin signaling pathway, but not by Vg1, Activin or noggin. Development 124, 453–460 (1996).
    Google Scholar
  23. Carnac, G., Kodjachbachian, L., Gurdon, J. B. & Lemaire, P. The homeobox gene siamois is a target of the wnt dorsalization pathway and triggers organiser activity in the absence of mesoderm. Development 122, 3055–3065 (1996).
    CAS PubMed Google Scholar
  24. Itoh, K., Tang, T. L., Neel, B. G. & Sokol, S. Y. Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase. Development 121, 3979–3988 (1995).
    CAS PubMed Google Scholar
  25. Smith, J. C., Price, B. M., Green, J. B., Weigel, D. & Herrmann, B. G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).
    Article CAS PubMed Google Scholar
  26. Banville, D. & Williams, J. G. The pattern of expression of the Xenopus laevis tadpole alpha-globin genes and the amino acid sequence of the three major tadpole alpha-globin polypeptides. Nucleic Acids Res 13, 5407–5421 (1985).
    Article CAS PubMed PubMed Central Google Scholar
  27. Zeng, L.et al. The mouse fused locus encodes axin, an inhibitor of the Wnt-signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).
    Article CAS PubMed Google Scholar
  28. Sokol, S. Y., Klingensmith, J., Perrimon, N. & Itoh, K. Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled. Development 121, 1637–1647 (1995).
    CAS PubMed Google Scholar
  29. Pierce, S. B. & Kimelman, D. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121, 755–765 (1995).
    CAS PubMed Google Scholar
  30. He, X., Saint, J. J., Woodgett, J. R., Varmus, H. E. & Dawid, I. B. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622 (1995).
    Article ADS CAS PubMed Google Scholar
  31. Karnovsky, A. & Klymkowsky, M. W. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proc. Natl Acad. Sci. USA 92, 4522–4526 (1995).
    Article ADS CAS PubMed PubMed Central Google Scholar
  32. Smith, W. C. & Harland, R. M. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67, 753–765 (1991).
    Article CAS PubMed Google Scholar
  33. Christian, J. L. & Moon, R. T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 13–28 (1993).
    Article CAS PubMed Google Scholar
  34. Cui, Y., Brown, J. D., Moon, R. T. & Christian, J. L. Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis. Development 121, 2177–2186 (1995).
    CAS PubMed Google Scholar
  35. Bhanot, P.et al. Anew member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).
    Article ADS CAS PubMed Google Scholar
  36. Lecuit, T. & Cohen, S. M. Proximal–distal axis formation in the Drosophila leg. Nature 388, 139–145 (1997).
    Article ADS CAS PubMed Google Scholar
  37. Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–274 (1983).
    Article ADS CAS PubMed Google Scholar
  38. Gawantka, V., Delius, H., Hirschfeld, K., Blumenstock, C. & Niehrs, C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 14, 6268–6279 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  39. Monaghan, P. A., Grau, E., Bock, D. & Schütz, G. The mouse homolog of the orphan nuclear receptor tailless is expressed in the developing forebrain. Development 121, 839–853 (1995).
    CAS PubMed Google Scholar
  40. Rupp, R. A., Snider, L. & Weintraub, H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1323 (1994).
    Article CAS PubMed Google Scholar
  41. Ryan, K., Garrett, N., Mitchell, A. & Gurdon, J. B. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell 87, 989–1000 (1996).
    Article CAS PubMed Google Scholar
  42. Hardy, S., Fiszman, M. Y., Osborne, H. B. & Thiebaud, P. Characterization of muscle and non muscle Xenopus laevis tropomyosin mRNAs transcribed from the same gene. Developmental and tissue-specific expression. Eur. J. Biochem. 202, 431–440 (1991).
    Article CAS PubMed Google Scholar
  43. Good, P. J., Richter, K. & Dawid, I. B. The sequence of a nervous system-specific, class II beta-tubulin gene from Xenopus laevis. Nucleic Acids Res. 17, 8000 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  44. Meier, V. S., Boehni, R. & Schuemperli, D. Nucleotide sequence of two mouse histone H4 genes. Nucleic Acids Res. 17, 795 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  45. Hemmati-Brivanlou, A. & Melton, D. A. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281 (1994).
    Article CAS PubMed Google Scholar
  46. Harlow, E. & Lane, D. Antibodies. A Laboratory Manual (Cold Spring Harbor Laboratory Press, NY, 1988).
    Google Scholar

Download references